
01_TCSS-5_x.indd 201_TCSS-5_x.indd 2 10/27/06 2:00:17 PM10/27/06 2:00:17 PM

Think differently about the Web design process.

See how to improve the design workflow.

Look forward to exciting possibilities.

1 Discovery

3

01_TCSS.indd 301_TCSS.indd 3 11/2/06 2:18:04 PM11/2/06 2:18:04 PM

01_TCSS-5_x.indd 401_TCSS-5_x.indd 4 10/27/06 2:00:21 PM10/27/06 2:00:21 PM

Introducing Transcendent CSS
Transcendent CSS is more than a plea to use the latest, coolest CSS. It’s a quest to use the
lessons you’re learning in CSS as a means to becoming the finest artist and designer you
can be. Transcendent CSS asks you to embrace the new rather than the old and to stimulate
new ways to find inspiration, create more agile and appropriate workflows for Web design,
and encourage yourself to constantly learn more about both the design and the technical
issues with which you work.

Which tools do you need to get started?
Which tools do you need to adopt the Transcendent CSS approach and to work along with
the principles explained in this book? You don’t need anything more than you are probably
using already. Don’t worry, you won’t need a spanner or a monkey wrench. You won’t even
need special software or new server configurations.

This book is not aimed at beginners; I assume you already have a good, working knowledge
of XHTML (eXtensible HTML) markup and CSS and you understand the core concepts of Web
standards. If you are still at the stage of using tables for layout, this book won’t teach you
about the basics of selectors or common CSS properties; many other fantastic references
are already available that will do just that.

But if you are a newcomer to CSS, I hope you will find the concepts and examples found
in this book inspiring and that you will want to grab hold of the handlebars and learn as
much as you can about CSS. No matter how long you have been working with CSS, you’ll
find new places to go and new things to learn.

Part 1: Discovery 5

01_TCSS-5_x.indd 501_TCSS-5_x.indd 5 10/27/06 2:00:23 PM10/27/06 2:00:23 PM

This book also assumes you have an open mind. Although not everything discussed will
be 100 percent relevant to you or the work you’re doing for your organization, studio, or
clients, I encourage you to take on new ideas. You can then adapt them to suit you better
and in ways that I could not have imagined. Most important though, I want you to have a
real desire for looking toward future methods and thereby creating fresh and exciting work
for the Web.

Why do you need Transcendent CSS?
I’m a designer. I like to design stuff. Some days I wish I designed iconic stuff such as
classic cars or maybe the Apple iPod—stuff that people love and that makes me piles of
cash…enough cash to buy as many classic scooters and 1960s Minis as I can fit in my
garage. But you see, for one, I don’t have a garage, and for another I enjoy what I design
too much. Call me Mr. Obsessed if you like, but I just love designing for the Web.

I haven’t always enjoyed the Web so much. Many times in my design career I could have
cheerfully put down my computer after days of frustration and gone to do something
completely different. Sometimes after struggling with one problem or another, the thought
of spending hours in a garden shed with nothing but an old radio for company and growing
gigantic leeks seemed appealing indeed. But rather than talking to vegetables, I stuck to
talking to myself, and before too long, it was “problem solved.” My passion for the Web
was back. Funny, though—I never expected Web design would be so challenging; I mean,
it’s not like climbing Mount Everest. People don’t choose to do it just “because it’s there.”

But many parts of the Web design process can be challenging for designers like me who
are visual thinkers. Every day we use visual tools such as Adobe Photoshop, Macromedia

01_TCSS-5_x.indd 601_TCSS-5_x.indd 6 10/27/06 2:00:23 PM10/27/06 2:00:23 PM

Fireworks, and others to move pixels around a screen to achieve our design goals. Some
of the more technical aspects of the stuff that makes Web sites work today, particularly
writing meaningful markup and CSS, can be unfamiliar or even seem counterintuitive.

CSS is not designer friendly
One factor is that as a technology built to help solve design problems, CSS is not very
designer friendly largely because it was created for designers by technologists rather than
by other designers.

Although the basic principles are simple enough, as you can see here:

p { color : #000; }
body { background-color : #fff; }

for some designers, terms such as the cascade and inheritance are more difficult to under-
stand. Add to this discussion talk of positioning, collapsing margins, or the box model, and
you might see one of the many reasons why designers have taken a reasonably long time
to adopt CSS.

For the longest period of time after CSS was launched, it was very much the domain of
technologists. Their big brains were better equipped to understand concepts such as
specificity as well as the myriad of largely unintelligible CSS hacks that were necessary
to implement a design more or less consistently across different browsers.

These difficulties have done little to reduce the knowledge gaps that have always existed
between visual designers and the technical developers who work to implement designs
using code, and they have often left designers feeling frustrated with CSS.

01_TCSS-5_x.indd 701_TCSS-5_x.indd 7 10/27/06 2:00:25 PM10/27/06 2:00:25 PM

Web browsers’ rendering inabilities have stifled progress
And then of course Web browsers challenge us. From the earliest implementations of
CSS in Microsoft Internet Explorer 3 (the first mainstream browser to support any CSS),
working with CSS has often been exasperating. Browser bugs, rendering errors, or just the
plain stupidity of certain browser behaviors all made our lives more difficult.

This situation did get better over time; Netscape 4.x was better than Internet Explorer 3,
and Internet Explorer 5 for the Mac showed for the first time that CSS could “work.”
Internet Explorer 6 had the best CSS support of any browser when it was released, despite
its now well-known catalog of colorfully named bugs.

I imagine my fourteen-year-old son, now taking his first steps into Web design, might
look back in years to come and laugh when he reads about the “double-margin float” or
the “peekaboo bug.” He also might wonder whether the “3px jog” was how designers today
exercised before they ate breakfast.

Never underestimate the power of the individual
Still, a way was found; largely because of the dedication of developers including Tantek
Çelik, Todd Fahrner, and Eric Meyer whose work then made it possible for designers such
as Douglas Bowman and Dave Shea to show that working with CSS was not only desirable
but a practical reality. Throughout the years since the first CSS specification was released,
dedicated people like this all over the world have battled with and found workarounds for
almost all the problems designers working with CSS face on a daily basis.

It is also important not to forget that by working on liaisons with browser vendors and
software developers and also working in education, members of the grassroots Web
Standards Project—including Rachel Andrew, Molly E. Holzschlag, and Dori Smith—have
all played major roles in raising awareness of the importance of standards.

Without these individuals working separately in small groups, CSS use would never have
been the powerful Web design tool it is today.

Relatively speaking, today we have it easy when compared to the pioneering early days of
CSS. Many new Web designers will never have experienced working with table-based layouts
or the frustrations of getting CSS layouts to work in what we think of now as ancient
browsers such as Netscape 4.

Why visual Web editors
are failing designers

Although over the years visual Web
editors such as Macromedia Dream-
weaver have improved the standard
of the markup and CSS they generate,
none of them has adequately solved
one of the major problems facing
visual designers who work on the Web,
that of relating what they see in their
designs to the meaningful markup
that will make it possible.

It is now an essential part of a profes-
sional Web designer’s job to under-
stand the fundamentals of meaningful
markup and CSS. Visual Web editors,
including Dreamweaver, need to help
designers see “beneath” their designs
and “visualize” their code.

8 Transcending CSS

01_TCSS-5_x.indd 801_TCSS-5_x.indd 8 10/27/06 2:00:27 PM10/27/06 2:00:27 PM

Some accessibility sites are downright ugly,

but the problem lies with those sites’ designers

and not with accessibility, which carries

no visual penalty. The same is true for Web

standards, even if the look and feel of the W3C

Web site is unlikely to motivate designers to

get busy learning about XML or CSS2.
JEFFREY ZELDMAN

Designing With Web Standards. First Edition, May 2003

01_TCSS-5_x.indd 901_TCSS-5_x.indd 9 10/27/06 2:00:28 PM10/27/06 2:00:28 PM

Expanding the creative possibilities
Now that Web browsers have reached a certain level of maturity in their support for
standards such as CSS, they provide us with a firmer foundation on which to develop our
designs. It is time to move forward, not stand still.

The mechanics of table-based layouts confined our designs to a rigid grid and reinforced
time after time the conventions of the typical two- or three-column layout still seen on
countless Web sites. CSS offers new creative possibilities by using floats and different
forms of positioning, it offers layering in the form of the z-index, and it gives you the
power to style any element through the CSS box model. These opportunities for creativity
were not possible with table-based layouts (Figure 1.1).

Designs that adapt beyond the screen
Two years before the publication of the first CSS specification and a full six months before
Netscape launched its first Web browser, Chris Lilley, who would become the chairman of
the W3C (World Wide Web Consortium) CSS Working Group, essentially predicted what would
happen to the Web during the rest of that decade:

If style sheets or similar information are not added to HTML, the inevitable price
will be documents that only look good on a particular browser, at a particular
window size, with the default fonts, etc.

— Chris Lilley (former chairman of the CSS Working Group, at the time snappily called
the Style and Formatting Properties Working Group), May 1994

After many years of hard work, the Web has now finally made its way onto mobile phones,
gaming devices, and televisions; in the future, this will include all manner of other port-
able devices that haven’t been invented yet.

Hold that download for a moment; I’m going into a tunnel
The truth of the matter is that we simply do not know where the Web will crop up next.
In years to come, my son will laugh at the idea that the Web was ever “hardwired” to the
desktop, just as I laugh at the memory of my first mobile phone that came with a battery
pack the size of a house brick and weighed just about the same.

10 Transcending CSS

01_TCSS-5_x.indd 1001_TCSS-5_x.indd 10 10/27/06 2:00:28 PM10/27/06 2:00:28 PM

1.1 Transitioning to CSS-based layouts does not always mean better structured or ordered code. Left: The presentational
content order of a table-based layout. Right: The tables have been replaced by <div>s without reordering the content.

Part 1: Discovery 11

01_TCSS-5_x.indd 1101_TCSS-5_x.indd 11 10/27/06 2:00:28 PM10/27/06 2:00:28 PM

In such a rapidly changing medium, Lilley’s words now ring truer than perhaps they did
when he first wrote them. Today’s designers should at least be aware that their designs will
have to adapt to the many needs of these different environments. Lightweight, meaningful
documents and CSS are key factors in successfully transitioning a design from the desktop
to other devices, be those devices printers, small-screen handheld computers, or personal
media players or mobile phones (Figure 1.2).

Accessibility is design, not a feature
Good information architecture, usability, and accessibility have rightly become areas of
concern for professional designers and developers. In particular, ensuring the widest pos-
sible accessibility is not only an ethical issue but also a commercial one. However, many
designers, developers, and other specialists in the accessibility realm have wrongly limited
conversations about accessibility to merely serving the needs of people with disabilities.

Accessibility is a matter of usability
Much of what has been written about accessibility has focused on ensuring that sites are
accessible to people who are blind or visibly impaired. Much more has been written about
ensuring that sites comply with accessibility guidelines or in some cases laws. However,
most of this simply misses the point.

Although serving the needs of people with disabilities should of course be a concern, the
far wider issue—that accessibility is a matter of usability—has rarely been discussed. As
designer professionals, we should be designing our content so it is globally accessible and
meets the needs of as many people as is possible and practical given our specific circum-
stances, regardless of their abilities or the type of device they choose to access the Web.

For the traveling businessman, whether he can successfully log on to his company’s intranet
to check sales figures on a handheld computer is both a usability and an accessibility issue,
as is that many movie sites offering branded goodies for your mobile phone do not offer
you the ability to access those pages using a mobile phone. It’s important to realize that it
is through good design that you can remove as many barriers to access for as many people
as possible.

12 Transcending CSS

01_TCSS-5_x.indd 1201_TCSS-5_x.indd 12 10/27/06 2:00:29 PM10/27/06 2:00:29 PM

1.2 Using CSS everywhere

Wearing badges is not enough in days like these
Unfortunately, many designers still view accessibility concerns as limitations on their
creativity, guidelines they should comply with, or laws they should obey rather than as
an everyday part of the job of a designer. Accessibility has too often been viewed as an
external factor with sites tested after completion to ensure that they meet one standard
or another:

If you look at accessibility as a feature, you’ll probably leave it out. Most developers
are gonna leave it out anyway; most developers don’t know the first thing about
accessibility or even that it’s important.

—Joe Clark (http://joeclark.org/ice/iceweb2006-notes.html)

It is sad that much of the work involved in ensuring that content and services are acces-
sible at best currently takes place late in the design and development processes and at
worst is an afterthought that requires a refit. When given the choice between the latest
exciting Ajax interface and accessibility, many companies will choose the dynamic interface
and may plan accessibility testing or features as part of a future release.

Part 1: Discovery 13

01_TCSS-5_x.indd 1301_TCSS-5_x.indd 13 10/27/06 2:00:29 PM10/27/06 2:00:29 PM

01_TCSS-5_x.indd 1401_TCSS-5_x.indd 14 10/27/06 2:00:30 PM10/27/06 2:00:30 PM

Explaining Transcendent CSS to your clients
Many designers have been itching to use the full power of CSS in their
work but have been held back because they believe their clients will
expect their designs will appear the same across all browsers.

It is true that many clients, companies, and hiring organizations do
expect it is part of a designer’s job to ensure such cross-browser com-
patibility. Although it rarely should be a designer’s job to educate a
client, some simple analogies can help you explain in broad terms the
concepts of Transcendent CSS to your clients.

In many other areas of design and technology, the concept that the
functionality or user experience of a product is the same regardless of
the age or competence of a technology is ridiculous. Consumers not
only expect that technologies will improve over time, but they also
want to know they have bought the most up-to-date product.

You can easily explain to a client that you design for the most modern
browsers using the latest coding techniques, but you still provide a
good experience for people who use outdated browsers.

HIGH-DEFINITION TV
HDTV (high-definition television) offers a far-higher-resolution picture
and better-quality sound than conventional television for people using
HDTVs and receivers. High-definition broadcast television has been
available in the United States for far longer than it has been in the
United Kingdom. Since the first satellite broadcasters announced
they were beginning high-definition broadcasts in the United Kingdom
in 2006, electrical retailers and makers of televisions have been
clambering to jump aboard the “HD-ready” bandwagon.

If you choose not to upgrade your equipment to HDTV or not to
pay an additional subscription to view in high-definition, you are
not excluded from watching your favorite soap, cop show, or football
game; you simply see a slightly inferior but perfectly acceptable
picture quality because your hardware is less up-to-date.

THE IPOD FACTOR
When Apple first launched its iPod portable music player, the player
had fewer features and a different user experience than buyers of
more recent models now enjoy. In a highly competitive marketplace,
Apple has maintained its lead by providing new features with almost
every release, such as the capability to store album art and play music
videos or TV shows downloaded from its iTunes Store.

Older versions of the iPod still provide the same functionality they did
when they were first unboxed. Consumers would never expect that an
older player would offer the same facilities as a newer model, and they
accept that to gain access to the new features they must upgrade.

PERPETUALLY UPGRADING YOUR SOFTWARE
The software industry has typically been littered with buggy, unstable
software releases and operating systems that would freeze or crash
on an almost daily basis. Yet despite these failings, consumers accept
that a newer, better version will be just around the corner and are
prepared to upgrade.

As well as being people who commission designers to develop
Web sites, clients are also consumers who are exposed to changing
technologies almost daily, and as such they can easily understand
that people using more modern browsers will get an enhanced user
experience or design.

Part 1: Discovery 15

01_TCSS-5_x.indd 1501_TCSS-5_x.indd 15 10/27/06 2:00:35 PM10/27/06 2:00:35 PM

However, when you work from the content out, using well-ordered and meaningful markup
to provide the content and structure and using CSS for visual styling, you can build acces-
sibility directly into the design process from the start. This will benefit everyone, including
the designer who will be less challenged by accessibility issues, the client who will ulti-
mately save money on retrofitting and have happier customers, and, most important, the
visitors to those sites who will more easily get the stuff done that they need to get done.

Moving toward Transcendent CSS
Compared to the freedom enjoyed by print and multimedia designers, those of us who
choose to work with markup and CSS have always suffered from factors limiting our
designs; these factors are often beyond our control.

Since the first CSS specification was published, our creative potential has been hampered
by the limited performance of browsers—unless, that is, we are prepared to sacrifice the
purity of our documents by using presentational markup or choose to work solely in Flash.

Browser makers have mostly continued to improve their support for Web standards, par-
ticularly CSS and the W3C DOM (Document Object Model), but Microsoft’s prior decision
to allow development of its Internet Explorer browser to stagnate at version 6, plus the
widespread, though thankfully now, reduced usage of its older versions has led to designers
being hesitant about using some of the more advanced aspects of CSS.

When competing browsers such as Mozilla Firefox, Mozilla Camino, Apple Safari, and
Opera began to shave percentage points off Internet Explorer’s market share (Table 1.1),
forward-thinking designers began to investigate ways to reward users of these more
modern browsers by giving them an extra layer of design finesse. This technique became
known as progressive or MOSe enhancement.

Note

In June 2005, I expanded on my
opinion that in order for the needs of
people with disabilities to be better
served on the Web, government-
sponsored laws and regulations were
counterproductive. “Accessibility and
a society of control” sparked many
interesting comments about how best
to move the cause of Web accessibility
forward (www.stuffandnonsense.co.uk/
archives/accessibility_and_a_
society_of_control.html).

16 Transcending CSS

01_TCSS-5_x.indd 1601_TCSS-5_x.indd 16 10/27/06 2:00:35 PM10/27/06 2:00:35 PM

Table 1.1 Browser usage in July 2004–2006
Internet
Explorer 7
(beta)

Internet
Explorer 6

Internet
Explorer 5 Firefox Mozilla Netscape Opera

2006 1.9% 57.8% 4.2% 25.0% 2.2% 0.4% 1.4%

2005 – 67.9% 5.9% 19.8% 2.6% 0.5% 1.2%

2004 – 67.2% 13.2% – 12.6% 1.8% 2.0%

Source: W3 Schools (www.w3schools.com/browsers/browsers_stats.asp), August 2006

MOSe enhancements
Way back in 2003, Dave Shea, the Canadian designer, author, and creator of the CSS Zen
Garden, wrote about a compelling new approach to the problem of creating designs for the
differing capabilities of competing Web browsers; he coined this approach MOSe (Mozilla,
Opera, Safari enhancement).

With MOSe, Shea claimed it was acceptable for designers to exploit Internet Explorer 6’s
(and earlier edition’s) lack of support for certain CSS selectors (among them child, adjacent
sibling, and attribute selectors) to provide an enhanced design for users of modern brows-
ers that was layered on top of a standard design that was visible to all.

In theory, Shea’s suggestion was no more complicated than the @import at-rule technique.
This widely used technique exploited that Netscape 4 could not interpret @import and pre-
vented the aging browser from CSS that it either could not understand or bungled, but this
technique has one important difference. When Shea wrote his article, Internet Explorer 6
was, despite its many flaws, a browser capable of supporting most of the CSS specification.
It was the most widely used browser in circulation, so any attempt to design away from it
had to be a subtle one.

Working around Netscape 4.x

Netscape 4.x had some CSS support.
In an attempt to shield CSS styles
that Netscape 4.x could not interpret,
many designers chose to hide all but
the most basic styles by using the
@import at-rule.

This is a basic style sheet visible to
all browsers including Netscape 4.x:

<link rel=”stylesheet”
type=”text/css” href=”simple.
css” />

This is a more advanced style sheet
for browsers with more explicit CSS
support:

@import “modern.css”;

All browsers will load simple.css;
however, only browsers that under-
stand the @import at-rule will load
modern.css. Since modern.css is
imported after simple.css, its rules
will override those in simple.css
unless those rules are more specific.

Part 1: Discovery 17

01_TCSS-5_x.indd 1701_TCSS-5_x.indd 17 10/27/06 2:00:36 PM10/27/06 2:00:36 PM

The key to the MOSe method is somewhat

similar to how NN4 (Netscape Navigator 4.x)

page design developed as CSS became more

prevalent. After creating a basic, functioning

page in IE, you add extra functionality

with these selectors.
DAVE SHEA

www.mezzoblue.com/archives/2003/06/25/mose/

01_TCSS.indd 1801_TCSS.indd 18 11/2/06 2:19:08 PM11/2/06 2:19:08 PM

FROM THE CSS ZEN GARDEN
Building on the MOSe approach, This Is Cereal, Shaun Inman’s CSS Zen Garden design, used
the CSS selectors that weren’t supported in Internet Explorer to provide visitors using
modern browsers with a richer experience. Inman transformed unordered lists of links into
subtle drop-down menus with alpha-transparent PNG images. Although he was not the first
designer to use this technique, his results were inspirational.

Visitors using older browsers see styled but plainer unordered lists and are not aware that
an alternative version exists. Subtle MOSe enhancements such as this have since become a
common feature in many of CSS Zen Garden’s designs (Figure 1.3).

1.3 Featuring MOSe enhancements
on CSS Zen Garden

Part 1: Discovery 19

01_TCSS-5_x.indd 1901_TCSS-5_x.indd 19 10/27/06 2:00:36 PM10/27/06 2:00:36 PM

AND ALL THAT MALARKEY
Inspired by Inman, for my personal Web site I created two distinct designs: one full-color
design inspired by the British mod(ernist) music movement of the 1960s and one black-and-
white 2Old design that was inspired by the stark two-tone imagery made famous by the
British ska record label 2Tone.

Because ska music came before mod, I made the ska design available only to legacy ver-
sions of Internet Explorer. I implemented the mod design using CSS2.1 selectors that are
understood only by mod(ern) browsers, which was a fun way to highlight the different
capabilities of browsers.

Note: My decision to “punish” visitors using Internet Explorer by depriving them of the full
mod design was not al together well received, as you can see for yourself at www.stuffand
nonsense.co.uk/archives/and_all_that_design_malarkey.html.

Progressive Enhancement
Several months after Shea’s MOSe article appeared, another was published in Triangle
TechJournal that further explained the concept of progressive enhancement:

Progressive Enhancement presents a viable approach by enabling the delivery of
information as demanded by the users, while embracing accessibility, future com-
patibility, and determining user experience based on the capabilities of new devices.

— Debra Chandra and Steve Champeon (http://hesketh.com/publications/
progressive_enhancement_paving_way_for_future.html)

strip moved to bottom, images will change, fpo for now -CW

01_TCSS-5_x.indd 2001_TCSS-5_x.indd 20 10/27/06 2:00:38 PM10/27/06 2:00:38 PM

But fully adopting the methods of progressive enhancement has been difficult for designers
to achieve in commercial projects until now. This difficulty stemmed not only from the
commanding market share of Internet Explorer 6 but also from the belief that it is correct
to set a design benchmark based on the most popular browser, even if that browser is less
capable and less advanced in its support for modern standards than its competitors.

For such a young and dynamic medium as the Web, the notion that designers should not
push design boundaries forward because of only one browser, even when that browser is
the market leader, seems incompatible with progress.

Both MOSe and progressive enhancement were ideas intended to encourage designers to
use all the tools made available to them in the CSS2.1 specification for browsers that sup-
ported these selectors and rules. Even today, several years later, these CSS rules are often
described as advanced or cutting edge despite that they were invented only a few years
after the birth of the commercial Web.

MOSe and progressive enhancement have been used on personal portfolios and blogs;
you can rarely find them on mainstream, commercial projects. As a result, progressive Web
design has largely stalled and, if left much longer, will begin to go stale.

My question is, can progressive enhancement still be called progressive three years after
the term was first coined? The answer must be no, so it is time to move forward.

01_TCSS-5_x.indd 2101_TCSS-5_x.indd 21 10/27/06 2:00:40 PM10/27/06 2:00:40 PM

01_TCSS-5_x.indd 2201_TCSS-5_x.indd 22 10/27/06 2:00:41 PM10/27/06 2:00:41 PM

The Principles of Transcendent CSS
This brings us to the subject of this book. The principles of Transcendent CSS allow Web
designers to focus on their creative goals without being preoccupied with technical
constraints. These principles allow Web designers to look to the future without being
compromised by the limitations of the past.

1 Not all browsers see the same design.

2 Use all available CSS selectors.

3 Use CSS3 where possible to look to the future.

4 Use JavaScript and the DOM to plug the holes in CSS.

5 Avoid using hacks and filters.

6 Use semantic naming conventions and microformats.

7 Share your ideas, and collaborate with others.

01_TCSS-5_x.indd 2301_TCSS-5_x.indd 23 10/27/06 2:00:46 PM10/27/06 2:00:46 PM

1.4 Sending different designs to different browsers at All That Malarkey

24 Transcending CSS

01_TCSS-5_x.indd 2401_TCSS-5_x.indd 24 10/27/06 2:00:47 PM10/27/06 2:00:47 PM

1 Not all browsers see the same design
Whereas progressive enhancement begins with less capable browsers such as Internet
Explorer 6 and then uses CSS selectors to add functionality, Transcendent CSS abandons the
notion that a less-capable browser is the benchmark.

Transcendent CSS reverses the Progressive Enhancement approach that creates a design
that can be rendered by all browsers but is limited to the capabilities of the lowest com-
mon denominator.

Transcendent CSS sets that benchmark squarely where it belongs today, with the CSS2.1
specification and those browsers that support it. It uses all the available CSS2.1 features,
not to add visual enhancements but to accomplish the best design for the most, standards-
capable browsers (Figure 1.4).

In practice, this approach will result in some visitors seeing a reduced design—how much
of a reduced design of course depends on your preferences and the specific needs of the
audiences using the sites you create.

2 Use all available CSS selectors
Transcendent CSS uses all CSS2.1 selectors plus other CSS features including pseudo-
elements and dynamic pseudo-classes. These selector types include the following:

Attribute selectors
Attribute selectors are amazingly powerful; they offer ways to style an element either
based on whether an element has an attribute name such as href or based on the attri-
bute value such as “http://www.stuffandnonsense.co.uk”.

In the following examples, all images that contain an alt attribute will have a gray border
(Figure 1.5):

img[alt] {
border : 1px dotted #999;
}

<img src=”http://www.hicksdesign.co.uk/images/love/bp.gif”
alt=”Brit Pack: A proud member” />

1.5 Outlining images with an alt
attribute

Part 1: Discovery 25

01_TCSS-5_x.indd 2501_TCSS-5_x.indd 25 10/27/06 2:00:48 PM10/27/06 2:00:48 PM

And all anchors that contain a title attribute will be red (Figure 1.6):

a[title] {
color : #c00;
}

Former Notts County Defender

You can also apply styles to an element based on the content of its attributes (Figure 1.7):

p[class=”rant”] {
font-weight : bold;
text-transform : uppercase;
}

<p class=”rant”>
But I am done apologizing. I am realizing more and more that the real world
produces shocking HTML and CSS is inherently very difficult to organize at the
best of times, let alone to organize well within a project that is jumping all
over the place at an extraordinary pace.
</p>

(Figure 1.8)

div[id=”content_main”] {
float : left;
}

<div id=”content_main”>
<blockquote>
<p>I hope that things will change. I hope that some young guns will take up
the challenge, stop following the crowd, and really push CSS to its fullest
potential.</p>
<p>Jeremy Keith</p>
<blockquote>
</div >

With pattern matching, you can style an element based on only part of its attribute, in this
case the base URL of the quotation’s citation (Figure 1.9):

1.6 Highlighting anchor with title
attributes

1.7 Styling a class rant

1.8 Floating a main content division

26 Transcending CSS

01_TCSS-5_x.indd 2601_TCSS-5_x.indd 26 10/27/06 2:00:49 PM10/27/06 2:00:49 PM

q[cite*=”http://www.andybudd.com/”] {
padding-left : 100px;
background : url(images/budd.jpg) no-repeat left top;
}

<q cite=” http://www.andybudd.com/archives/2006/07/layout_grid_bookmarklet/”>
Inspired by Khoi Vinh’s post about using a background image of a grid for
layout, I decided to knock up a quick Photoshop style Layout Grid Bookmarklet
</q>

You will learn much more about attribute selectors and their practical applications in
Part 4, “Transcendence.”

Child selectors
A child selector targets a direct child of a given element. For example, this gives you the
potential to style anchors that are direct children of list items differently from other anchors
on a page. Child selectors consist of two or more selectors separated by the > combinator.

Note: Combinators separate two or more selectors that make up a combined selector.
Available combinators include white space, >, and + as well as a comma or a colon.

This rule will style all anchors that are children of a <div> element:

div > a {
text-indent : -9999px;
}

This rule affects only <a> elements that are direct children (not other descendants) of
<div> elements. If any other elements appear between the <div> and the anchor—for
example, a element—the selector will not match, and the text-indent style will
not be applied (Figure 1.10):

<div>
Skip to content

Andy Budd
Jeremy Keith
Richard Rutter

</div>

1.9 Adding a background image to
a quotation

1.10 Hiding a “skip to content” link

Part 1: Discovery 27

01_TCSS-5_x.indd 2701_TCSS-5_x.indd 27 10/27/06 2:00:50 PM10/27/06 2:00:50 PM

Adjacent sibling selectors
An adjacent sibling selector consists of selectors separated by the + combinator. It matches
an element that is the next sibling to the first element. Elements must have the same
parent, and the first must immediately precede the second:

h2 + p {
font-size : 110%
border-bottom : 1px solid #666;
}

When applied in the following example, the previous rule will affect only the first para-
graph (Figure 1.11):

<h2>Hicksdesign</h2>
<p>Hicksdesign was started by Jon Hicks in 2002, after 8 years working
as a designer with charities, government bodies and publishers.</p>
<p>You won’t hear jargon or pretentious designer talk, we have built
a reputation for being friendly and easy to work with.</p>

Pseudo-classes and pseudo-elements
You can use pseudo-classes and pseudo-elements to style elements based on information
that is not available in the DOM. For example, it is often desirable to style the first line
of a paragraph or the first letter of a heading.

PSEUDOCLASSES
Pseudo-class style elements are based on characteristics other than their identifier,
attributes, or content.

This :first-child pseudo-class matches an element that is the first child of another
element. Imagine you want to give the first paragraph of a news article more visual
prominence. If the article appears in a <div> element with a class name of news, the
following rule styles the first <p> element in each article (Figure 1.12):

div.news p:first-child {
font-size : 110%;
font-weight : bold;
}

1.11 Sibling selectors

1.12 First-child pseudo-class

28 Transcending CSS

01_TCSS-5_x.indd 2801_TCSS-5_x.indd 28 10/27/06 2:00:50 PM10/27/06 2:00:50 PM

<div class=”news”>
<p>We are really pleased that this years d.Construct sold out in under 36hrs.
If you were lucky enough to secure a ticket, we look forward to seeing you in
sunny Brighton.</p>

<p>Brighton is a popular little spot and hotels get booked up early.</p>
</div>

A subset of pseudo-classes is the dynamic pseudo-class. These are pseudo-classes that have
some dynamic feature. You can use dynamic pseudo-classes to style elements depending on
certain actions that a site visitor might perform.

:focus applies while an element has the focus, such as when a visitor either clicks within
a form or tabs to a form input (Figure 1.13):

input[type=text]:focus {
color : #000;
background-color : #ffc;
}

You can use the :lang language pseudo-class to style elements where content is in a par-
ticular language, perhaps a language that differs from the main language of the document.
For example, the following rule applies a small German flag icon to any <blockquote> in
the German language (Figure 1.14):

blockquote:lang(de) {
padding-right : 30px;
background: url(images/de.png) no-repeat right top;
}

<blockquote lang=”de”>
<p>Die Webkrauts setzen sich dafür ein, die Vorteile der Webstandards auch
im deutschsprachigen Raum stärker zur Geltung zu bringen. Wir leisten
Aufklärungsarbeit durch Veröffentlichungen im Netz und in anderen Medien.</p>
</blockquote>

PSEUDOELEMENTS
Pseudo-elements also allow you to style parts of the document that are not available as
nodes in the DOM.

The :first-line pseudo-element targets the first line of a paragraph of text. The number
of words in any first line will vary according to the scaling of the text size in the browser.

1.13 Focusing on an input

1.14 Adding a language flag

Part 1: Discovery 29

01_TCSS-5_x.indd 2901_TCSS-5_x.indd 29 10/27/06 2:00:51 PM10/27/06 2:00:51 PM

1.15 Styling the first line

1.16 Introducing the first letter

The following rule applies to the first line of text in any paragraph on a page (Figure 1.15):

p:first-line {
font-size : 120%;
font-style : italic;
}

The :first-letter pseudo-element allows you to target the first letter or digit of an
element. The next rule applies to the first character in a <p> element with a class name of
 introduction (Figure 1.16):

p.introduction:first-letter {
font-size :400%;
font-weight : bold;
}

3 Use CSS3 where possible to look to the future
Although CSS2.1 is, at the time of this writing, still not yet a final recommendation and
the W3C’s CSS Working Group has much to do before completing its work on all aspects of
the CSS3 draft modules, evolving browsers such as Firefox already support some of these
new technologies. When practical, Transcendent CSS makes it possible to use some of the
already implemented CSS3 features. These include parts of the CSS3 multicolumn module that
is already supported by Firefox or multiple background images that are currently enabled
in Safari.

Although it is too early to rely heavily on CSS3 features in everyday design, it is important
to use what is practical today as a way of understanding the creative opportunities of what
will be possible tomorrow. You will see many of the exciting possibilities of CSS3 in Part 4,

“Transcendence.”

4 Use JavaScript and the DOM
to plug the holes in CSS
One of the ways designers and developers can work around the limitations of browsers is by
using JavaScript and the DOM to plug some of the holes in CSS support. This technique has
been made popular by JavaScript developers including Cameron Adams and Dean Edwards
(see Part 4).

30 Transcending CSS

01_TCSS.indd 3001_TCSS.indd 30 11/2/06 2:19:59 PM11/2/06 2:19:59 PM

5 Avoid using CSS hacks and filters
Hacking and filtering CSS has been a necessary evil since the earliest days of CSS layouts.
From the first media HTML filter that was used to hide CSS from Netscape 4.x to the
(in)famous box model hack, using hacks and filters has become an almost everyday
necessity with which to handle the inconsistencies in some browsers’ treatment of CSS.

Just like your markup, hacks should be valid
In 2002, Tantek Çelik’s box model hack, in all its ugly glory, made CSS layouts consistent
across all browsers. It did this by working around the fact that, at the time of its invention,
Internet Explorer for Windows still incorrectly calculated the width and height of a box:

div#content {
width : 400px;
voice-family : “\”}\””;
voice-family :inherit;
width : 300px;
}

These unfamiliar voice-family properties hid the second, correct width of a content area
from Internet Explorer for Windows by giving it an incorrect width and then confusing it
with valid declarations that it could not interpret. Browsers that supported the voice-
 family property then implemented the correct CSS width. CSS layouts were, as a result,
finally practical.

Despite its unfamiliar syntax, the box model hack contains valid CSS, one of the key
principles in a transcendent approach to using CSS hacks or filters.

Toward the end of 2005, Çelik wrote a seminal article, “Pandora’s Box (Model) of CSS Hacks
and Other Good Intentions,” that recapped the history of CSS hacking and recommended
best practices. Çelik’s article forms the basis of the Transcendent CSS approach to using CSS
hacks—that you should avoid using them at all except as a last resort.

If hack use is unavoidable in any given situation, hacks should target either only those
browsers that have been abandoned, such as Internet Explorer for the Mac, or browsers fro-
zen in their development but still in wider circulation. This now includes Internet Explorer 6 for
Windows. You should always avoid using hacks that target a current version of any browser.

Generated content using
:before and :after

The benefit of generated content is
often debated between designers and
developers who believe CSS should
only style content on a page and
not add content to it and those who
believe it has a rightful place in CSS.

You can use the :before and :after
pseudo-elements to insert generated
content either before or after an
element’s content. For example, you
can display the href attribute of a
link using this:

a:link:after {
content : “ (“ attr(href) “) “;
}

The next rule applies to every second-
level heading and inserts a decorative
image before the content:

h2:before {
content : “”;
display : block;
height : 20px;
width : 20px;
background : url(target.png)
no-repeat 0 0;
margin-right : 20px;
}

CSS-generated content is supported
by standards-aware browsers but will
not be supported by Internet Explorer
7 or perhaps even future versions of
Internet Explorer.

Part 1: Discovery 31

01_TCSS-5_x.indd 3101_TCSS-5_x.indd 31 10/27/06 2:00:53 PM10/27/06 2:00:53 PM

Note: Tantek Çelik and Molly E. Holzschlag, among others, have written two excellent
articles on how to manage hacks and filters. Çelik’s “Pandora’s Box (Model) of CSS Hacks and
Other Good Intentions” provides a fascinating history of CSS hacks at http://tantek.com/
log/2005/11.html, and Holzschlag offers sound advice in “Strategies for Long-Term CSS Hack
Management” at www.informit.com/articles/article.asp?p=170511&rl=1.

The demise of CSS hacks and broken pages
In late 2005 with the beta version of the long-awaited Internet Explorer 7 browser released,
Internet Explorer’s Program Manager for Layout and CSS, Markus Mielke, asked designers
and developers to abandon their use of CSS hacks altogether and switch instead to using
Microsoft’s proprietary conditional comments:

We ask that you please update your pages to not use these CSS hacks. If you want
to target IE or bypass IE, you can use conditional comments.

—Markus Mielke (http://blogs.msdn.com/ie/archive/2005/10/12/480242.aspx)

Supported only by Internet Explorer for Windows, conditional comments make it simple to
either target or bypass different versions of Internet Explorer by placing comments in the
<head> portion of your XHTML document.

For example, to provide a common set of rules to all browsers but only a specific set of
rules to all versions of Internet Explorer for Windows, you can use this:

<link rel=”stylesheet” type=”text/css” href=”standards.css” />
<!--[if IE]>
<link rel=”stylesheet” type=”text/css” href=”ie.css” />
<![endif]-->

Alternatively, you may need to target a specific version of Internet Explorer, in this
example, version 5:

<!--[if IE 5]>
<link rel=”stylesheet” type=”text/css” href=”ie5.css” />
<![endif]-->

With Internet Explorer 7, providing far better CSS support than version 6 or its older sib-
lings, perhaps the most useful conditional comment targets only Internet Explorer version
6 and older:

Two popular DOM scripting plugs

Two very popular DOM scripting plugs
are Cameron Adams’s resolution-
dependent layouts and Shaun Inman’s
position clearing.

Resolution-dependent layouts:
In early 2006, Adams published an
experimental technique that uses
Java Script to detect the width of a
browser window and load different
CSS rules according to that width.
This made it possible for designers
to provide a slightly modified page
layout for visitors using lower screen
resolutions than for visitors using
higher resolutions such as 1024x800
pixels. You can find out more about
the resolution-dependent layout tech-
nique at www.themaninblue.com/
writing/perspective/2006/01/19/.

Inman position clearing: To solve
the problem of footers not “clear-
ing” absolutely positioned columns,
Shaun Inman developed an ingenious
Java Script and CSS solution to force
footers to drop below absolutely
positioned content. You will be using
Inman’s solution in Part 2, “Process,”
and you can find out more about
Inman position clearing at www.
shauninman.com/plete/2006/05/
clearance-position-inline-absolute.

32 Transcending CSS

01_TCSS-5_x.indd 3201_TCSS-5_x.indd 32 10/27/06 2:00:53 PM10/27/06 2:00:53 PM

<!--[if lte IE 6]>
<link rel=”stylesheet” type=”text/css” href=”ielegacy.css” />
<![endif]-->

Since conditional comments can be used only in the markup layer, not from within CSS,
and are proprietary only to Microsoft browsers, many designers prefer to avoid using them.
They rely instead on hacks such as the * html hack that exploits a bug in earlier versions
of Internet Explorer’s CSS rendering.

With many such bugs and errors now corrected in Internet Explorer 7 and with conditional
comments valid in XHTML, conditional comments are gaining more popularity. I now use
conditional comments in all my projects.

6 Use semantic naming conventions
and microformats
Unless you’ve been away for a while sewing mailbags at Her Majesty’s pleasure, you will
already know that the semantic naming of elements and attributes has been a hot topic for
designers and developers.

Where once you might not have thought twice about labeling a paragraph with class=
”big-black-text”, it is now more widely accepted that presentational names such as
header, left, or red that describe an element’s look or position are poor choices.

Some examples of presentational versus nonpresentational naming include the following
(Figure 1.17):

Presentational name Meaningful equivalent
#header #branding

#sidebar #content_sub

#footer #site_info

To date, little consistency exists in the names that designers have chosen for their attri-
butes. That’s not surprising because it is part of a designer’s job to come up with cool new
stuff. The idea of using the same names repeatedly isn’t something designers like to do;
in addition, the idea that they would use the same as other designers doesn’t have much
appeal either.

Note

You can find out more about Internet
Explorer’s conditional comments and
how to target specific versions of that
browser at http://msdn.microsoft.com/
library/default.asp?url=/workshop/
author/dhtml/overview/ccomment_
ovw.asp.

Note

The universal (*) selector targets
all children of a given element; for
example, body * { padding : 0
20px; }. However, because HTML is
the root element in a document, it can
have no ancestors.

Part 1: Discovery 33

01_TCSS-5_x.indd 3301_TCSS-5_x.indd 33 10/27/06 2:00:53 PM10/27/06 2:00:53 PM

Thinking of element names is one area of Web design where designers should try hard to
fit in with their peers, though. Designs won’t suffer from it, and it makes working within
teams and even across companies a lot more intuitive.

Developers also appreciate naming conventions because they enable them to develop
applications that can scrape content such as calendars or contact information from pages
to create relationships between sites.

Developing naming conventions
It was again in 2005 that I first turned my thoughts to the subject of the names that
designers were choosing to label their elements. Andy Budd wrote an article about
this topic:

You’ll wrap a div or a span around another element to act as a hook for your style. By
doing this you’re adding meaningless markup to your code for display reasons. This
makes you feel bad, so you’ll try to give these hooks some meaning. You’ll put all your
branding code inside a div called branding and your main content inside a div imagi-
natively called mainContent. The question that springs to my mind is, does it matter?

—Andy Budd (www.andybudd.com/archives/2004/05/semantic_coding)

Andy Budd’s article and the readers’ comments it inspired made me think about what the
benefits of establishing conventions for element names might be. I soon realized such
conventions do matter; in fact, they matter a lot.

I began by surveying the sites of forty designers and bloggers. I thought that if they
worked similarly to the way I did, the names they had chosen for their personal sites would
be reflected in their client work.

The result of these late nights of study revealed that at the time, attribute naming included
wide variations, even for something as straightforward as the humble page container
<div>. I found everything from the obvious page to wrap to Ethan Marcotte’s wonderful
going-to-hell.

When I wrote about this exercise on my Web site, it sparked several conversations else-
where about why we should adopt common naming and whom it would ultimately benefit.

Note

Former CSS Samurai John Allsopp has
long advocated for the adoption of
standardized element naming and
has created WebPatterns, a site where
you can contribute your own ideas on
the subject of naming conventions
(www.webpatterns.org).

34 Transcending CSS

01_TCSS-5_x.indd 3401_TCSS-5_x.indd 34 10/27/06 2:00:54 PM10/27/06 2:00:54 PM

1.17 Using semantic naming

Part 1: Discovery 35

01_TCSS-5_x.indd 3501_TCSS-5_x.indd 35 10/27/06 2:00:54 PM10/27/06 2:00:54 PM

Eric Meyer suggested in “Elemental Nomenclature,” that should a convention be estab-
lished, he would implement those attribute names on his own site in combination with his
CSS signatures to give his visitors more control over his site layout and design.

Naming conventions help in teams
In team design and development environments, naming conventions can save your working
and thinking time, because they leave you free to design rather than sit around wondering

“Now what should I call this thing?”

Naming conventions can also help different people working on any one project to relate to
each other, because they can more easily understand the many different elements and how
those elements relate to their neighbors and to the wider Web.

When different people are working on a site at any one time, conventions make it simpler
to understand the markup that has been written by another designer or developer. Conven-
tional naming practices reduce the time it takes to mentally deconstruct a document and
reduce the margins and costs of error.

Even if you work on your own rather than in a team environment, using naming conven-
tions will help you, particularly when you return to a project after a period of time. I’m
sure I’m not the only person who has opened a CSS file I wrote months earlier only to sit
scratching my head while I wondered, “Umm clear:left; what does that relate to?”
I’m sure you have done something similar.

In team-based work environments, you can extend your naming conventions from markup
to other elements including CSS background images. In this instance, you can also use the
name of an element for the filename of its background image. Rather than name an image
file according to how it looks or what it contains, you can name it according to the element
to which it relates. For example: brighton_pier.jpg might become branding.jpg, and
flowers.jpg might become body.jpg because the new names relate directly to their
context and not to their appearance.

Naming conventions can make for hours of geeky fun
Designers Douglas Bowman and Dave Shea made many geeks smile on April Fools’ Day 2004
when they swapped their style sheets and stole each other’s site designs. Although their
swap was intended to be fun, Bowman and Shea were inadvertently making a serious point.

Note

You can read the results of my
naming conventions survey at www.
stuffandnonsense.co.uk/archives/
naming_conventions_table.html.

36 Transcending CSS

01_TCSS-5_x.indd 3601_TCSS-5_x.indd 36 10/27/06 2:00:54 PM10/27/06 2:00:54 PM

Does my site design not serve your needs, or

bore you? Create something better suited to

your tastes! I promise I won’t mind; in fact, I’d

like to see what you devise. If a set of ID naming

conventions does firm up, I’ll likely adopt it

here so visitors can restyle my site consistently

with others that use the same nomenclature.

This is, it seems to me, the least I can do.
ERIC MEYER, June 2004

http://meyerweb.com/eric/thoughts/2004/06/18/elemental-nomenclature

01_TCSS.indd 3701_TCSS.indd 37 11/2/06 2:21:08 PM11/2/06 2:21:08 PM

Much of the effort that was involved in swapping designs was a direct result of the dif-
ferent class and id attribute names that each had chosen for their own site. Shea’s
page container <div> was labeled container while Bowman had chosen a class labeled
container. The names for their side columns were also different, with Bowman’s sidecol
being incompatible with Shea’s sidebar.

Had they chosen the same names, swapping their designs would have been far simpler. In
the absence of common names, both were left with little choice but to edit the markup of
each of their sites to make the swap possible (Figure 1.18).

SWAPPING STYLES WITH THE CSS LOVE CHILD
As well as being an entertaining example of the chaos that can ensue when you mix one
person’s markup with another’s CSS, Cameron Adams’s CSS Love Child demonstration high-
lights the tremendous benefits that could be achieved if designers chose the same element
names as their peers.

TAKE YOUR VITAMINS
What if you love the content of Vitamin but prefer the typographical touches of A List Apart
so you want to combine the two? By choosing the same element names, the designers of
both these sites could allow a visitor to apply the A List Apart style sheet to Vitamin, put-
ting them firmly in control (Figure 1.19).

Note

You can read more about how they
swapped designs at Dave Shea’s
Mezzoblue (www.mezzobluecom/
archives/2004/04/02/poisson_davr)
and Douglas Bowman’s Stop
Design (www.stopdesign.com/
log/2004/04/02/return.html)
articles.

Note

You can find the bastard offspring
of the CSS Love Child at http://the-
maninblue.com/experiment/
CSSLoveChild.

1.18 Swapping designs

38 Transcending CSS

01_TCSS-5_x.indd 3801_TCSS-5_x.indd 38 10/27/06 2:00:55 PM10/27/06 2:00:55 PM

In an era where the social aspect of integrating content from many different sites is a key
part of the Web 2.0 buzz, many more visitors would benefit enormously if designers and
developers adhered to common naming.

Note: At the time of this writing, both Vitamin and A List Apart use attributes on their
<body> elements, but neither gives visitors the control that either CSS signatures or com-
mon naming would provide.

A List Apart surprisingly uses an empty class placeholder, potentially a sleep-deprived over-
sight or an erroneous CMS artifact, while Vitamin limits its visitors by using a site-specific
 homepage body attribute. It would be far more helpful to visitors if both sites adopted both
common naming and CSS signatures.

Common naming gives visitors extra control
Establishing these types of conventions has benefits not only for designers and develop-
ers but, most important, for visitors to the sites you create, giving them extra degrees of
control over the sites they read on a regular basis.

What? Give visitors control over your pages? Yes, that’s exactly what I mean, and it’s
sometimes a difficult concept for designers to grasp. After all, you’re the designer, right?
You know your Bézier curves from your CMYK conversions, so why should you let them
tinker with your carefully crafted designs? The truth is that designing for the Web is unlike
designing for other media. The Web is the first medium that gives people the option to
change the way in which content is presented to them.

Do you enjoy the content of the Times but prefer the typography and layout of another
newspaper? I’m sorry, but you have little choice but to stick with the Times’ more tradi-
tional feel. The Web is a very different medium than newsprint, and designers must realize
they are not designing sites for themselves but for the folks at home. You should make
that experience as pleasant as you can by ensuring it is easy for your visitors to change
something about your designs they may not like.

Sometimes a visitor might need only to increase a site’s default text size. It would be far
more convenient if Web designers made it easy for visitors to attach their own user style
sheets to override particular styles by tapping in to a site’s CSS signature. In reality, you
rarely know what people are thinking about your sites, so you should provide them with
the tools to display your content in any way they choose.

1.19 Letting users take control

Part 1: Discovery 39

01_TCSS-5_x.indd 3901_TCSS-5_x.indd 39 10/27/06 2:00:56 PM10/27/06 2:00:56 PM

01_TCSS-5_x.indd 4001_TCSS-5_x.indd 40 10/27/06 2:00:57 PM10/27/06 2:00:57 PM

Introducing microformats
HTML markup was always intended by its inventors to add structure and meaning to Web
documents. That’s cool, because that’s exactly what it does. The trouble is that only about
forty elements are available for you to describe the meaning of your content. Headers,
paragraphs, and tables of data aren’t that much of a problem; after all, that’s what most of
the boffins who invented the Web needed to describe. But on today’s Web, forty elements
just aren’t enough.

Sure, you have ordered lists, unordered lists, and definition lists, but where are the ele-
ments to fully describe a book title, a review, or maybe a conversation about whether a
book is any good? Microformats extends XHTML and combines all the benefits of precise
meaning with greater opportunities for designers to style content using CSS. See the side-
bar on page 43 for more details on microformats.

7 Share your ideas, and collaborate with others
Since the early days of CSS collaboration, sharing knowledge and ideas has helped moved
the Web forward. Yes, I know the notion of sharing is all very “happy hippy,” but it is true
that most, if not all, the techniques designers now use on a daily basis have been devel-
oped by individuals who then shared that knowledge freely with the wider community.

Many of these techniques were not designed to be experimental but to help solve the com-
mon problems that designers face every day when implementing their designs with CSS.

From the earliest days of CSS layout, designers Rob Chandanais of the BlueRobot Layout
Reservoir and Owen Briggs’s Box Lessons shared their knowledge and their techniques.
Todd Fahrner shared his findings on different browsers’ rendering of font size keywords, and
later A List Apart Magazine published an article by Douglas Bowman, “Sliding Doors of CSS,”
about transforming simple unordered lists into tabbed-style navigation.

But this was not the end of designers sharing their knowledge and experiences of CSS.
Since CSS began, there have been hundreds, perhaps thousands, of designers who have
contribute their knowledge freely on Web sites such as A List Apart Magazine, on dedicated
forums, and on their personal sites.

Whether what you share is useful for anyone but yourself rarely matters; it is the process
of sharing that is valuable, and you will always get so much more from sharing an idea or

Note

An interesting use for an id attribute
placed either on the <html> or on
the <body> element is referred to as
CSS signatures.

These CSS signatures allow visitors
to make changes to the style of an
individual site by adding rules to
their browser’s user style sheet.
You can read more about CSS
signatures, developed by Eric
Meyer and Mark Irons, at http://
archivist.incutio.com/viewlist/
css-discuss/13291.

Part 1: Discovery 41

01_TCSS-5_x.indd 4101_TCSS-5_x.indd 41 10/27/06 2:01:08 PM10/27/06 2:01:08 PM

01_TCSS-5_x.indd 4201_TCSS-5_x.indd 42 10/27/06 2:01:09 PM10/27/06 2:01:09 PM

Understanding microformats
Independent designers and developers have been hard at work squeez-
ing new meaning from XHTML. Currently, the most well known of these
initiatives is microformats. Microformats extend existing XHTML rather
than create a new language, and as such they are easy to learn and
easy to implement. You need only add a set of attribute values to your
markup to start using them. Let’s take the rudimentary example of my
business contact information. This contains a mailto: link, and my
name will be hyperlinked to my Web site:

Andy Clarke
Principal and Lead Designer
Stuff and Nonsense Ltd.
tcss@malarkey.co.uk

You already have an <address> element that most appropriately
describes that information, but what about elements that explicitly
describe my name, my title, or the company I founded?

You can look all you want through the XHTML specifications, but I’ll
save you the effort. There aren’t any…no name, job, or company
 elements—nothing. XHTML was designed to be extensible, and micro-
formats are among the first set of extensions to be commonly adopted.
Microformats use class and other attributes to give such precise
meaning to your content.

Need an organization element? Add class=”org”, and you have
one. Need to mark up a family name and can’t find an element precise
enough? Add class=”family-name”, and you just created one.

If you need to mark up any contact information so it can easily be
extracted and saved in a format that can be imported into Apple
iCal or Microsoft Outlook, you simply add class=”vcard” to your
address, and you have a simple card format that is meaningful and
useful to both people and machines:

<address class=”vcard”>
<a class=”url fn n” href=”http://www.stuffandnonsense.
co.uk/”>
Andy
Clarke

Principal and Lead Designer
<a class=”org” href=”http://www.stuffandnonsense.co.uk/
”>Stuff and Nonsense Ltd.
 tcss@
malarkey.co.uk
</address>

This development is exciting. Microformats combine all the benefits
of precise meaning with greater opportunities for designers to style
content using CSS.

Note: You can find out more about the latest microformats and
contribute to their development on the microformats wiki (http://
microformats.org/wiki).

The microformats community has already released a number of new
formats, with more being continually developed and proposed. New
applications for microformats have already emerged, and software
vendors including Microsoft are advocating for them. While being
interviewed by Tim O’Reilly at Microsoft’s MIX06 conference, Bill Gates
said, “We need microformats.”

Part 1: Discovery 43

01_TCSS-5_x.indd 4301_TCSS-5_x.indd 43 10/27/06 2:01:15 PM10/27/06 2:01:15 PM

If the Internet teaches us anything, it is that

great value comes from leaving core resources

in a commons, where they’re free for people

to build upon as they see fit.
LAWRENCE LESSIG

www.lessig.org

01_TCSS.indd 4401_TCSS.indd 44 11/2/06 2:21:36 PM11/2/06 2:21:36 PM

 technique than you will from keeping it to yourself. For example, I created a simple chart to
help me understand specificity in CSS. To help me remember what can sometimes be a com-
plex concept I used characters from the Star Wars movies. This chart was intended for my own
use, but the article explaining it has since been translated into four languages. I got more
satisfaction from the knowledge that the chart was useful to others than I did from making it.

Without this explosion of free and open knowledge of techniques and best practices, the
use of CSS may never have grown to the level it has reached today.

Updated and better practices are being developed and shared all the time, and although
CSS now has fewer technical trouble spots, new techniques are still being published that
can teach you new ways to use CSS.

In October 2005, nine years after the release of the first CSS specification, “In Search Of
The One True Layout” described a new method for making columns that were independent
of their order in the HTML.

Although the solution is far from perfect, mostly because of browser inconsistencies and
not CSS, it came as a surprise to many seasoned CSS experts. The technique clearly demon-
strated we could learn new ways to use CSS, and it showed how constructive collaboration
could produce an even better solution.

It has not only been caring and sharing, soft-centered individuals who have been commit-
ted to sharing their knowledge. Major corporations such as Yahoo and others have been
publishing their internal libraries for public use.

The Yahoo Developer Network’s UI Library of CSS tools features CSS grid templates that can
make more than one hundred page layouts from a single CSS file. This sharing benefits not
only the CSS design community but also those people who are sharing those ideas with
others.

Despite that designers today have a much greater understanding of what CSS can do, in the
future you’ll see new ideas for its use and better solutions to older problems that designers
haven’t yet discovered.

As the last few years have shown, collaboration and sharing can be highly effective in
improving our knowledge of what CSS can do. As CSS3 develops and more browsers imple-
ment parts of the many CSS3 modules, we will always have more to learn and many more
opportunities to collaborate with others to create better solutions.

Note

CSS Specificity Wars is available
for you to download at www.
stuffandnonsense.co.uk/archives/
css_specificity_wars.html

Note

Alex Robinson’s “In Search of the
One True Layout” is published along
with many other inspiring CSS layout
techniques at Position Is Everything
(www.positioniseverything.net/).

Note

Many CSS templates and tools are
freely available on the Yahoo Devel-
oper Network’s UI Library for you to
explore and implement in your own
projects (http://developer.yahoo.com/
yui/index.html). There is even a blog
updated regularly by Yahoo developers
for you to keep up with their latest
ideas (www.yuiblog.com/).

Part 1: Discovery 45

01_TCSS-5_x.indd 4501_TCSS-5_x.indd 45 10/27/06 2:01:16 PM10/27/06 2:01:16 PM

01_TCSS-5_x.indd 4601_TCSS-5_x.indd 46 10/27/06 2:01:16 PM10/27/06 2:01:16 PM

What Makes Transcendent
CSS Possible Now?
For many designers who are new to CSS, it might be difficult to imagine a time when
creatively designed sites implemented with CSS were in the minority.

Although sites implemented with meaningful markup and CSS still occupy only a small
percentage of the total number of sites launched each year, I hope we have passed the
point where there can be any doubt that using CSS is not only highly desirable but also
highly practical.

As soon as images were allowed inline in HTML documents, the Web became a new
graphical design medium. Some people will just want to put out text, but some will
want to apply graphical design skills and make a document. These people are, at
least, a sizeable minority and there should be a means for them to achieve their ends.

— Chris Lilley (http://lists.w3.org/Archives/Public/www-html/1994May/
0010.html), May 1994

In May 2003, the CSS Zen Garden’s experimental playground proved that when designers work
with CSS, they can create any number of exciting and inspirational designs from a single
XHTML document. Outside the walls of the CSS Zen Garden, the world was slowly changing,
and designers were finding new techniques to use CSS in more and more creative ways.

Note: A forerunner to the CSS Zen Garden perhaps, Microsoft’s CSS Gallery (developed for
Internet Explorer 3 no less) includes “Same Content, Different Style” and demonstrates just
how creative CSS designers have become. Explore the CSS Gallery at www.microsoft.com/
typography/css/gallery/entrance.htm.

During the earliest days of CSS when many of the solutions to everyday design problems
had yet to be invented, CSS designs were thought to be boxy and boring. Thanks largely
to the success of the CSS Zen Garden in appealing directly to designers, you can now visit
thousands of creative CSS-based sites from the smallest of small businesses to the largest,
high-profile commercial companies.

Part 1: Discovery 47

01_TCSS-5_x.indd 4701_TCSS-5_x.indd 47 10/27/06 2:01:19 PM10/27/06 2:01:19 PM

01_TCSS-5_x.indd 4801_TCSS-5_x.indd 48 10/27/06 2:01:19 PM10/27/06 2:01:19 PM

The walls of inspiring CSS galleries such as CSS Beauty and StyleGala are now full of site
designs from all corners of the world and all corners of society and commerce. Regular
redesign events, including CSS Reboot, encourage designers to reveal their latest redesigns
on the same day, which attracts hundreds of designers, including some of the industry’s
best-known names (Figure 1.20).

Unexpected uses for CSS
Over the past few years, CSS has been cropping up in all manner of unexpected places,
from instant messaging to everyday applications, such as Web browsers and e-mail clients,
right down to the desktop.

In fact, Adium (http://adiumx.com) is an alternative chat client to iChat AV for Mac users
that offers them the ability to choose between hundreds of interface themes, all download-
able from its Adium Xtras site. Whether you prefer your chat windows to look like metal,
look like shiny plastic, or perhaps even resemble a terminal window (if you want to feel
really hardcore), the options should keep you entertained for hours.

But the fun doesn’t stop there, because beneath the surface of Adium is a chat window
made from XHTML and message themes that are styled using—guess what?—CSS. So if you,
like me, can’t live without a chat window emblazoned with targets, arrows, and the Union
Flag, you can easily create new themes and pass them around to your friends. I’m sure they
will all love you for it.

CSS is also a key component in the look and feel of Mozilla applications, including the
Thunderbird mail client and the Firefox browser. In these applications, you can style but-
tons, windows, pages, menus, and sliders all using CSS and images.

The Apple Dashboard Widgets are also created using a combination of XHTML, JavaScript,
and CSS as well as some proprietary Apple Script. This simple mix of Web technologies
makes it easier to develop new Dashboard Widgets or to edit the thousands of others that
have already been developed.

1.20 Achieving camaraderie in the CSS community

Part 1: Discovery 49

01_TCSS-5_x.indd 4901_TCSS-5_x.indd 49 10/27/06 2:01:22 PM10/27/06 2:01:22 PM

Support does not mean that everybody gets the

same thing. Expecting two users using different

browser software to have an identical experience

fails to embrace or acknowledge the heterogeneous

essence of the Web. In fact, requiring the same

experience for all users creates a barrier to

participation. Availability and accessibility

of content should be our key priority.
NATE KOECHLEY

http://developer.yahoo.com/yui/articles/gbs/gbs.html

01_TCSS.indd 5001_TCSS.indd 50 11/2/06 2:22:01 PM11/2/06 2:22:01 PM

Graded browser support
Until 2006, MOSe and progressive enhancement were topics largely discussed only in rela-
tion to blogs or experimental designs and never in relation to large-scale, commercial Web
sites. Many designers thought the approach was too risky while the majority of Web users
still browsed using Internet Explorer 6 for Windows.

Surprisingly, affirmation that the techniques central to the Transcendent CSS approach are
practical on large-scale commercial projects came not from discussions on designer forums
or blogs, but from one of the Web’s true giants—Yahoo.

In February 2006, Yahoo standards evangelist Nate Koechley published a Yahoo Developer
Network document called “Graded Browser Support.”

What exactly does support mean?
Koechley’s article makes it clear that it is neither possible nor desirable for people access-
ing Web content using different browsing technologies or devices to expect to receive
exactly the same design. After all, a person will have a different experience browsing the
Web using a large desktop monitor than someone using the small screen of a handheld PDA
(personal digital assistant) or mobile phone. Extending that notion to browser versions is
only a small step.

Graded browser support does not exclude users of older browsers from accessing content; it
simply acknowledges that not all visitors will see the same levels of visual design. Koechley
explains the concept:

An appropriate support strategy allows every user to consume as much visual and
interactive richness as their environment can support. This approach builds a rich
experience on top of an accessible core, without compromising that core.

—Nate Koechley, (http://developer.yahoo.com/yui/articles/gbs/gbs.html)

Part 1: Discovery 51

01_TCSS-5_x.indd 5101_TCSS-5_x.indd 51 10/27/06 2:01:22 PM10/27/06 2:01:22 PM

Browser grading
In the past, the widespread adoption of “advanced” CSS has been stymied by the view that
a design should look the same across all browsers and platforms. To help solve this problem,
Yahoo grouped browsers into three “grades”: C-grade, A-grade, and X-grade.

Table 1.2 Yahoo-Graded Browser Matrix
Browser grades Description

C-grade Visitors using “incapable, antiquated, and rare” C-grade browsers experience
a basic level that consists of core content and functionality. The content
and experience is “highly accessible, unenhanced by decoration or advanced
functionality.” Layers of style and behavior are omitted.

A-grade Visitors using A-grade browsers can take full advantage of their browser’s
“powerful capabilities of modern Web standards; the A-grade experience provides
advanced functionality and visual fidelity.”

X-grade X-grade browsers include “fringe or rare browsers.” Browsers receiving X-grade
support are assumed to be capable and not “choke on modern methodologies.”

Yahoo browser grading charts are updated approximately every quarter. This chart is as of August 2006.

Browser support standards
The idea of compiling a table of supported browsers is of course not new with Yahoo!.
Many large organizations and content providers such as the BBC long ago developed what
have often been called browser matrixes, and guidelines, for their developers in relation to

“target,” “supported,” and “unsupported” browsers. However, the BBC’s approach still harks
back to the notion that the most popular browser of the day should be the target browser
irrespective of its capabilities.

What is different about the approaches taken by BBC and Yahoo! is Yahoo!’s commitment
to the notion that it is acceptable to provide different levels of design experience for
modern rather than older browsers and that a target browser need not necessarily be the
most popular. In taking this transcendent approach, Yahoo! has demonstrated and stated
publicly that Transcendent CSS use is not only possible but required if the Web is to move
forward quickly, not stagnate or move at the pace of the slowest browser.

Thousands of designers and developers from all over the world have adopted Web standards.
This is great news for anyone who is either creating or consuming Web content. Finally, it
is possible to use a Transcendent CSS approach with confidence and know you are in good
company.

Note

Although it is now clearly showing
its age, the BBC Browser Support
Standards table, available at
www.bbc.co.uk/guidelines/newmedia/
technical/browser_support.shtml, is
still an interesting read.

52 Transcending CSS

01_TCSS-5_x.indd 5201_TCSS-5_x.indd 52 10/27/06 2:01:22 PM10/27/06 2:01:22 PM

Discovery, process, inspiration, and transcendence
Transcendent CSS is part of a larger process that involves the following:

 • Evaluating how you think about and use markup and CSS

 • Thinking about the way you work and how you collaborate with others

 • Reconsidering old-fashioned ideas about cross-browser compatibility

 • Positioning meaningful, semantic markup at the center of everything you create

Knowing this, it’s now time for you to put on your parka, kick start your scooter, and move
off. In this book, you will ride pillion through all the important facets of Transcendent CSS.
Don’t worry, you don’t need to put your arms around me; we don’t know each other well
enough yet!

You will start at the beginning with the discovery of the content-out approach to using
markup, and you’ll learn how you should always structure and order markup meaningfully
rather than according to how it looks or its visual layout.

Then, in Part 2, you will learn to take a new perspective on the process of Web design, finding
out more about the meaning-based workflow. You will see how to combine visual design
and meaningful markup earlier in your design process by working with standards-based
prototyping. If by then you want to get your hands dirty, you will get to build a standards-
based prototype using XHTML, CSS, and a little JavaScript.

You will then look for design inspiration (Part 3), paying attention to grids and how they
have been used in Web design. You will learn how you can derive alternative types of
layouts from grids that have been inspired from other media. It is here that you’ll learn to
look around you for more unusual forms of inspiration to bring home to your designs.

Finally, you will learn how all this fits together in transcendence (Part 4) by working
through examples that show you how to accomplish Transcendent CSS techniques. You will
work with all kinds of positioning, floats, and other layout techniques; learn new tech-
niques for using advanced CSS2.1 selectors; and look at working with different media types.

And if that isn’t enough, you will finish by learning about CSS3, which is the next
version of CSS, and the many exiting creative opportunities it will offer. You will even get
to see the CSS3 Advanced Layout Module and can download all the example files to see
it working in action.

Part 1: Discovery 53

01_TCSS-5_x.indd 5301_TCSS-5_x.indd 53 10/27/06 2:01:23 PM10/27/06 2:01:23 PM

01_TCSS-5_x.indd 5401_TCSS-5_x.indd 54 10/27/06 2:01:23 PM10/27/06 2:01:23 PM

Designing from the Content Out
Way back in the mists of 1997, typographer David Siegel changed the Web, as we knew it,
when he wrote about an emerging technique for laying out Web pages. Somewhere in the
dim light of a laboratory, an HTML <table> element had been stitched together with a
spacer GIF and then flooded with 10,000 volts of electricity. This gave life to the idea of
using <table> markup as a means for visually laying out pages.

Designers rejoiced that they had found a way to reproduce some of traditional print media’s
layout conventions on the Web, caring little, if they even realized, that the inventor of the
<table>, Dave Raggett, had originally intended his creation to present tabular information.

But while Web designers partied like it was 1997, Siegel soon recognized he had unleashed
a monster. Not long after, he wrote “The Web Is Ruined and I Ruined It”:

Some people say I’ve ruined the Web, and to them it’s true. […] I ruined the
Web by mixing chocolate and peanut butter so they could never become unmixed.
I committed the hangable offence of mixing structure with presentation.

—David Siegel (www.xml.com/pub/a/w3j/s1.people.html)

Not only did Siegel’s monster go on to spawn several “killer” sequels and millions of
Web pages that mixed up their content, structure, and presentation, it also reinforced the
thinking that content and structure should depend on visual layout in the minds of Web
designers. This notion has stayed in the minds of Web designers ever since to the detri-
ment of flexibility, semantic meaning, and accessibility.

Whereas we understand now that it is always preferable that content and structure be
independent from visual presentation, table-based layouts impose their order on the
content of a document to achieve a specific visual result.

The content order of a table-based design may make perfect sense to a visitor who can see
the visual layout, but taking away that visual presentation and that order can make the
content incomprehensible (Figure 1.21).

Therefore, many people, including Siegel, soon advocated against using tables for layout.
But in the absence of a viable, working alternative, the monster was left free to roam.

Part 1: Discovery 55

01_TCSS-5_x.indd 5501_TCSS-5_x.indd 55 10/27/06 2:01:25 PM10/27/06 2:01:25 PM

1.21 Left: View of the Web site. Right: Removing the visual presentation makes the content order incomprehensible

56 Transcending CSS

01_TCSS-5_x.indd 5601_TCSS-5_x.indd 56 10/27/06 2:01:25 PM10/27/06 2:01:25 PM

Fortunately, we now have CSS to hunt down and destroy the beast. But even though CSS
layouts are now possible in almost every situation, designers continue to find it hard to
move away from presentational thinking about the structure and order of their content.

The content-out approach
Peel back the skin of many modern CSS layouts, and you will find that presentational
markup and content order still remain. CSS-styled pages are often still constructed in a

“top-to-bottom, left-to-right” order that has been designed to satisfy the cravings of the
visual design. But this time they use <div> elements rather than a <table> element.

The HTML Working Group at the W3C originally intended the <div> element to be used for
the semantic grouping of areas with related content. But many designers now use them in
the same way they used tables, to achieve a visual layout, without paying much attention
to their divisions’ semantic value.

Simply replacing <table> cells with <div> elements will not help you gain the full ben-
efits of using Web standards or CSS. Unless you have carefully considered the meaning of
each division, <div> elements are little better than using tables, particularly when they
are nested several levels deep. Unfortunately, although they have continued to improve the
quality of the code they output, visual Web editors such as Dreamweaver continue to create
code that contains an abundance of nested divisions. By adding more <div> elements than
are absolutely necessary, not only do you increase the size of your documents, but you also
increase the likelihood of errors creeping in during your development.

01_TCSS-5_x.indd 5701_TCSS-5_x.indd 57 10/27/06 2:01:27 PM10/27/06 2:01:27 PM

1.23 Examining the typical content order of a CSS layout

A typical, nonoptimized CSS layout
Consider the content order of a simple but typical page that has been styled with CSS
(Figure 1.23). This document contains branding, two sets of navigation links, two related
areas of content, and an area holding site-related information.

Part 1: Discovery 59

01_TCSS-5_x.indd 5901_TCSS-5_x.indd 59 10/27/06 2:01:30 PM10/27/06 2:01:30 PM

Remove the CSS on many sites using this visual structure, and you will see that the content
order typically runs something like this:

<div id=”branding”>Top-level heading</div>
<div id=”nav_main”>Main navigation</div>
<div id=”content_sub”>Secondary content (left)</div>
<div id=”content_main”>Main content (right)</div>
<div id=”nav_sub”>Secondary navigation</div>
<div id=”site_info”>Legal and copyright information</div>

Here the order of the content follows a table-based layout, and in essence the designer has
done little more than replace table cells with semantically named divisions.

Optimize the content order with or without styles
Looking at the previous example with no style sheet attached, you will see you could make
many improvements to the order. The Web Content Accessibility Guideline 1.0 specification
clearly states what you should do:

(6.1) Organize documents so they may be read without style sheets. For example,
when an HTML document is rendered without associated style sheets, it must still
be possible to read the document. [Priority 1]. When content is organized logically,
it will be rendered in a meaningful order when style sheets are turned off or not
supported.

—WCAG 1.0 specification (www.w3.org/TR/WAI-WEBCONTENT/)

Another important issue, of course, is not only content order, but navigation order.

Note

The Linearize Page feature of
the Web Developer extension for
Firefox (https://addons.mozilla
.org/firefox/60) is a valuable tool
for showing the order of content
within any Web page.

01_TCSS-5_x.indd 6001_TCSS-5_x.indd 60 10/27/06 2:01:31 PM10/27/06 2:01:31 PM

Navigation
The two areas of navigation are related but kept separate, one near the top of the source
order and the other near the bottom. Sharing a common parent <div> and having their
own identities would subtly add more semantic meaning to both navigation lists:

<div id=”nav”>
<ul id=”nav_main”>
Main navigation

<ul id=”nav_sub”>
Secondary navigation

</div>

You could then place both these navigation lists either near the beginning or near the
end of your document source and use CSS positioning to place them visually wherever you
require for your design.

Branding and content
You could write the two related content areas in the order they appear onscreen and not in
the order that makes sense without styles.

01_TCSS-5_x.indd 6101_TCSS-5_x.indd 61 10/27/06 2:01:32 PM10/27/06 2:01:32 PM

You will also see that the branding area, which typically will contain a top-level heading,
is separated from the content that follows. Actually, in this example, the heading does
not require a containing <div>, because you can apply styles to the heading to create the
same visual result:

<h1>Top-level heading</h1>

Swapping the order of the content <div> elements and placing the heading directly before
them restores the relationship between the heading and content:

<h1>Top-level heading</h1>
<div id=”content_main”>Main content</div>
<div id=”content_sub”>Secondary content</div>

This revised order will better suit the needs of visitors who cannot see the visual layout
(Figure 1.24):

<h1>Top-level heading</h1>
<div id=”content_main”>Main content (right)</div>
<div id=”content_sub”>Secondary content (left)</div>
<div id=”nav”>
<ul id=”nav_main”>
Main navigation

<ul id=”nav_sub”>
Secondary navigation

</div>
<div id=”site_info”>Legal and copyright information</div>

Using CSS, you have greater control over layout than was ever possible with table-based
designs. You are largely free to change the visual layout of a page without altering its
linear order. This greatly improves accessibility for people who access Web content using

“linear browsers” such as screen readers. When CSS styles are removed or not available, what
remains is well-ordered content.

With the positioning tools offered by CSS and an increased knowledge of how you can use
them effectively, it is time to finally let presentational markup sleep the long sleep. You
can help it rest in peace by learning to adopt a content-out approach.

62 Transcending CSS

01_TCSS-5_x.indd 6201_TCSS-5_x.indd 62 10/27/06 2:01:35 PM10/27/06 2:01:35 PM

1.24 Left: The most appropriate order for the content, 1 through 9.
Right: That order superimposed on the visual design.

Part 1: Discovery 63

01_TCSS-5_x.indd 6301_TCSS-5_x.indd 63 10/27/06 2:01:35 PM10/27/06 2:01:35 PM

01_TCSS-5_x.indd 6401_TCSS-5_x.indd 64 10/27/06 2:01:37 PM10/27/06 2:01:37 PM

Semantics Is Meaning
In technical terms, meaning is often also described as semantics and has become a hot
topic among designers and developers. Even among those who have been working with
markup for a while, disagreements still often occur over choosing the most appropriate
markup to add the most fitting meaning. Molly E. Holzschlag sums this up nicely:

In markup, semantics is concerned with the meaning of an element and how that
element describes the content it contains.

—Molly E. Holzschlag (www.informit.com/articles/article.asp?p=369225&rl=1)

CSS Naked Day
A world (wide Web) without style might seem an odd concept, but increasingly many
designers have been considering how their pages would behave in such a world.

In an attempt to encourage designers to focus on the “naked” structure behind their visual
designs, Dustin Diaz proposed removing the CSS style sheets from their sites for one day
(facing page).

Diaz’s aim was to highlight the use of meaningful markup and the importance of structure
and content ordering. Along the way, it also confused a good many visitors, who no doubt
thought their browser was broken when many sites that day appeared in only the default
browser styles.

CSS Naked Day illustrated the need for designers to structure and order content logically
before beginning any work on accomplishing a visual design.

It clearly showed that with no distracting visual layout, the meaningful structure of your
naked content becomes clear: Visitors can more easily see headings and hierarchy, and they
can more easily identify paragraphs, quotations, and lists.

Such meaningful markup and structure simplifies design. Everyone will benefit from an
altogether simpler user experience, one that will be as easy to navigate on any device from
a large monitor to a small-screen mobile phone.

Note

CSS Naked Day was supported by one
of the cocreators of CSS, Håkon Wium
Lie, plus more than 700 designers who
shed their virtual clothes and showed
the world nothing but their naked
content. You can find out more about
why so many designers stripped off
their styles at http://naked.dustin
diaz.com.

Part 1: Discovery 65

01_TCSS-5_x.indd 6501_TCSS-5_x.indd 65 10/27/06 2:01:39 PM10/27/06 2:01:39 PM

Translating meaning into markup:
The Markup Is Right
Writing meaningful markup can be simple when you approach it from the content, not the
presentation. Rather than starting by asking “What XHTML elements do I need to accom-
plish this design?” ask yourself “What is this?” and “What does this mean?”

Before you think about the language of XHTML, think about the language you speak and
how you would explain the content, and then translate what you have said into markup.

Imagine for a moment you are on a TV quiz show called The Markup Is Right. You’re a little
nervous, but the slick host starts with an easy question to help you feel comfortable.

QUIZ MASTER: “What is this?”

YOU: “It’s a top-level heading.”

This simply translates to the “most important heading,” and in markup, it’s an <h1>:

<h1>BritPack and destinations</h1>

Play on
Luckily, The Markup Is Right is not one of those difficult quiz shows with a $100,000,000
top prize; it’s more of a teatime quiz where the questions start easy and then don’t get a
whole lot more difficult. “Let’s play on,” says the host.

QUIZ MASTER: “What is this?”

YOU: “It’s a list of names, in no particu-
lar order, and each name is a link.”

66 Transcending CSS

01_TCSS-5_x.indd 6601_TCSS-5_x.indd 66 10/27/06 2:01:39 PM10/27/06 2:01:39 PM

This simply translates to an “unordered list of items (the names) where each link is an
anchor,” and in markup it looks like this:

Rachel Andrew
Mark Boulton
Andy Budd
Simon Collison
Dean Edwards

You’re feeling confident, not even sweating under the lights; the prize is already in sight.

QUIZ MASTER: “You’re doing well; the
final question for this round is, what is
this?”

YOU: “It’s a block of text that I am
quoting from Patrick Griffiths’s HTML
Dog Web site.”

This translates into markup language
as follows:

<blockquote>
<p>If you have two (or more) conflicting CSS rules that point to the same
element, there are some basic rules that a browser follows to determine which
one is most specific and therefore wins out.</p>
<p><cite>
Patrick Griffiths
</cite></p>
</blockquote>

You’re doing well
At this stage in the game, what the content “looks like” is not important; what matters is
meaning. The elements you have chosen have not been for their appearance, and even in
basic text browsers, the meaning of the content will be clear.

Part 1: Discovery 67

01_TCSS-5_x.indd 6701_TCSS-5_x.indd 67 10/27/06 2:01:40 PM10/27/06 2:01:40 PM

Picturing the content-out design
After a short break for commercials, you are back in the hot seat, and the smarmy host is
aching to get you sweating in this round, the pictures round.

QUIZ MASTER: “I’m going to show you three pictures, and I want you to describe the
content you want to convey from each picture and then translate that into markup.
Here is your first picture.”

NUMBER 1: HORSES
YOU: “It’s a picture of several jockeys on horses, each wearing different colored
 jerseys. The picture has a title, Par for the Horse. Translate that into markup and you
have this”:

<h2>Par for the Horse</h2>

Red
Blue
Pink
Green

You add for a bonus point, “If I wanted a particular horse to link to the horse owner’s
Web site, I could add an anchor around the color, and because those linked words do
not properly describe the contents of the pages I am linking to, I would add a title
attribute to those links”:

<a href=”http://www.stuffandnonsense.co.uk” title=”Andy Clarke’s personal
site”>Red

68 Transcending CSS

01_TCSS-5_x.indd 6801_TCSS-5_x.indd 68 10/27/06 2:01:41 PM10/27/06 2:01:41 PM

01_TCSS-5_x.indd 6901_TCSS-5_x.indd 69 10/27/06 2:01:42 PM10/27/06 2:01:42 PM

NUMBER 2: A RACE
YOU: “It’s a race and there is an implicit order to the runners. I would also like to list
the runners’ names and entrance numbers and links to their personal profiles”:

2312 Paul Weller
0605 Bruce Foxton
1992 Rick Buckler
2011 Peter Townsend
2205 Roger Daltrey
1966 John Entwistle

70 Transcending CSS

01_TCSS.indd 7001_TCSS.indd 70 11/2/06 2:22:41 PM11/2/06 2:22:41 PM

01_TCSS-5_x.indd 7101_TCSS-5_x.indd 71 10/27/06 2:01:49 PM10/27/06 2:01:49 PM

NUMBER 3: A TAXI QUEUE
YOU: “This one is a little trickier to mark up because there is more detail in the
content I want to convey: the taxi number and its driver’s name, plus the license plate
number and the taxi’s position in the rank.

“This information is ideally suited to a table because it is tabular data. I will use table
headers to give the content more structure, use a table row for each taxi, and add a
caption to the table that describes its contents”:

<table>
<tr>
<th>Taxi number</th>
<th>Driver name</th>
<th>License plate</th>
<th>Position in rank</th>
</tr>

<tr>
<td>8K33</td>
<td>Aaron Gustafson</td>
<td>666 DOM</td>

<td>1</td>
</tr>

</table>

I wish someone gave huge prizes for writing meaningful markup, but the biggest winners
will be your visitors. Even if you go home with only a cuddly toy or a toasted sandwich
maker, your documents will be smaller, more meaningful, and more accessible if you follow
the content-out approach.

72 Transcending CSS

01_TCSS-5_x.indd 7201_TCSS-5_x.indd 72 10/27/06 2:01:52 PM10/27/06 2:01:52 PM

01_TCSS-5_x.indd 7301_TCSS-5_x.indd 73 10/27/06 2:01:53 PM10/27/06 2:01:53 PM

01_TCSS-5_x.indd 7401_TCSS-5_x.indd 74 10/27/06 2:01:57 PM10/27/06 2:01:57 PM

01_TCSS-5_x.indd 7501_TCSS-5_x.indd 75 10/27/06 2:02:00 PM10/27/06 2:02:00 PM

What does the content tell you?
If you are a developer who still works in an environment where designers deliver to you
completed design visuals, they can help you choose the most appropriate markup to
 maintain the meaning of their content in a number of ways.

Designers can add short notes directly to a design visual, perhaps on a separate layer
inside a Photoshop or Fireworks file. This can be a powerful way to specify that meaning
must be preserved and can also be highly effective when designers and developers
work side-by-side and make a simple but effective education or communication tool
(Figure 1.25).

Meaningful descriptions can include the following:

 • “This list has no order.”

 • “An ordered list of top-selling items.”

 • “A top-level heading.”

 • “A quotation from a happy customer.”

These descriptions contain no presentational information and help clarify the mean-
ing of each design element without a designer ever having to leave the cozy confines of
Photoshop.

Moving meaningfully along
By now you have learned that designing for a modern Web requires you to think differently
about the ways you write meaningful, semantic markup. Rather than considering the visual
layout as your starting point, as so often has been the case until now, you have seen the
importance of starting with the “naked” content and working outward, adding appropri-
ately identified divisions until accomplishing your design—all with a minimal amount of
markup and none of the presentational hacks that have stalked the Web for so long.

So if you’re ready, next you’ll learn how to put these ideas into practice by working through
a series of short exercises that will help you become more familiar with markup in the
Transcendent CSS approach.

76 Transcending CSS

01_TCSS-5_x.indd 7601_TCSS-5_x.indd 76 10/27/06 2:02:02 PM10/27/06 2:02:02 PM

1.25 Clarifying the meaning of each design element

Part 1: Discovery 77

01_TCSS-5_x.indd 7701_TCSS-5_x.indd 77 10/27/06 2:02:03 PM10/27/06 2:02:03 PM

Example 1 Example 2 Example 3

Example 4 Example 5 Example 6

Example 7 Example 8 Example 9

01_TCSS-5_x.indd 7801_TCSS-5_x.indd 78 10/27/06 2:02:03 PM10/27/06 2:02:03 PM

Marking Up the World
Earlier in this chapter, you learned about the importance of writing meaningful and
well-ordered markup as the basis for implementing your designs. You also saw that in the
past, visual presentation dictated the elements you chose and the order in which you
wrote them. Using the content-out approach, you can free your markup once and for all of
presentational thinking. Through some simple examples, you learned that you can, at last,
separate meaning and presentation.

Now it’s time to put those lessons into practice through a series of fine-art exercises. You’ll
start by looking at new examples and thinking about the meaning they convey, and then
you’ll write markup that appropriately describes that meaning. You’ll start with lists, the
basis of much standards-based code.

All the world’s a list; every item must play its part
If you strip away the style sheets from most standards-based pages, you will find an
abundance of lists; unordered, ordered, and definition lists have become the stalwarts of
meaningful markup.

You will find that standards-savvy designers have put lists to many different uses, in cluding
everything from simple groups of links to tabbed-style navigation to product listings in
e-commerce stores. Some designers have also stretched the semantics of lists and used
them for laying out form inputs and their labels.

Lists are all around us, even in the real world. Sure, you have to-do lists and shopping lists,
but take the nine examples (opposite); in each, a list is appropriate for one or more areas
of content. The type of list you choose will depend on the content you want to convey.

Part 1: Discovery 79

01_TCSS-5_x.indd 7901_TCSS-5_x.indd 79 10/27/06 2:02:08 PM10/27/06 2:02:08 PM

Are the books in Example 1 in any order? They may have been stacked on the shelf at
random after pulling them straight out of a dusty box. If that were the case, then an
u nordered list would be the most appropriate. However, it’s possible that their owner
placed them in the order they were published or, this case, the volume number. If this
were true, then the order would dictate that an ordered list would be most appropriate:

Deals in Diamonds
But Ill He Lived
Devilweed
The Taste of Proof

Example 1

80 Transcending CSS

01_TCSS.indd 8001_TCSS.indd 80 11/2/06 2:23:13 PM11/2/06 2:23:13 PM

Example 5

Now look at Example 5. It would be unlikely that these motorcycles have been parked in
order of color or even in order of the year they were made. More likely, their riders parked
in the next available space. To list them by model, color, or even the owner name, you
would use an unordered list because they were parked in no specific order:

Green
Gray
Blue
Purple

Part 1: Discovery 81

01_TCSS-5_x.indd 8101_TCSS-5_x.indd 81 10/27/06 2:02:13 PM10/27/06 2:02:13 PM

If history is your thing, Example 8 shows three medieval helmets. Perhaps you need to
convey their ages and list the helmets in chronological order. However, many times you will
need to convey more detailed information about a list of items. In the case of each helmet,
you might want to list not only its name but also a short description of its design and how
the design affected the wearer’s performance in a battle or joust.

Although definition lists were invented strictly to mark up definition terms and their
descriptions, many designers have stretched the semantics and used them in instances like
this to join “name” and “value” pairs. In this example, you would mark up the name of the
helmet using a definition term, <dt>, and mark up the description using a definition data
element, <dd>. This combination of terms and definitions has extended the usefulness of
the definition list far beyond that for which it was originally intended:

<dl>
<dt>Bassinet Helmet</dt>
<dd>To protect the neck against sword strokes a chainmail “net” is added to
the back portion of the helmet.
</dd>

<dt>Medieval Helmet</dt>
<dd>It had a comb like the Morion but gave better protection by the hinged
cheek pieces. In battle an additional front protection could be added.</dd>
</dl>

Lists as far as the eye can see
By looking at the remaining examples and considering the content you want to convey with
them, you’ll find that you’ll use lists in every instance. It’s your job to hunt them down.

Unfortunately, with only forty XHTML elements at your disposal and only three types of
lists, sometimes you will need to combine lists with other elements to give them more
precise meaning.

Example 8

82 Transcending CSS

01_TCSS-5_x.indd 8201_TCSS-5_x.indd 82 10/27/06 2:02:16 PM10/27/06 2:02:16 PM

01_TCSS.indd 8301_TCSS.indd 83 11/2/06 2:23:43 PM11/2/06 2:23:43 PM

“If I have two beans and then add two more beans, what do I have?”
Often you can use lists in combination with other structural elements to create new XHTML
compounds. XHTML compounds provide meaning that is more specific than is possible with
just a single element.

I’ll use the example of a conversation between two of my favorite comedy characters,
Captain Blackadder and Private Baldrick from Blackadder Goes Forth. What elements should
you use to mark up this conversation, given that no <conversation> element exists in
XHTML?

Headings and paragraphs are not precise enough to say conversation, and although many
designers might be tempted to use a definition list, a conversion is not strictly terms or
definitions. What is needed is a combination of meaningful elements that together form a
compound to describe a conversation. Building precise XHTML compounds are simple when
you design from the content out.

A plan so cunning you could brush your teeth with it
What are conversations, and what happens in them? No matter what is said or who says
what, in conversations people say words, and they do so over a period of time.

In XHTML you already have the <blockquote> element to describe what a person says:

<blockquote>
<p>The British Empire at present covers a quarter of the globe, while the
German Empire consists of a small sausage factory in Tanganyika. I hardly
think that we can be entirely absolved of blame on the imperialistic front.
</p>
</blockquote>

You also have the <cite> element for the name of the person who is being quoted:

<cite>Captain Blackadder</cite>

What is missing now is an element that can group who is speaking, and what they’re
 saying, in the order that took place during the conversation.

From the speakers and quotations at the center, you can work outward, wrapping that
content inside another element that was designed to add order; cunningly, it was named an
ordered list:

Note

What’s an XHTML compound, you
ask? To learn more about XHTML and
XHTML compounds, you can download
the full presentation of “The Elements
of Meaningful XHTML” at http://
tantek.com/presentations/2005/09/
elements-of-xhtml/.

84 Transcending CSS

01_TCSS-5_x.indd 8401_TCSS-5_x.indd 84 10/27/06 2:02:19 PM10/27/06 2:02:19 PM

<cite>Blackadder</cite>
<blockquote>
<p>If I have two beans and then I add two more beans, what do I have?</p>
</blockquote>

<cite>Baldrick</cite>
<blockquote>
<p>Some beans</p>
</blockquote>

<cite>Blackadder</cite>
<blockquote>
<p>Yes and no. Let’s try again shall we? I have two beans, then I add two more
beans. What does that make?</p>
</blockquote>

<cite>Baldrick</cite>
<blockquote>
<p>A very small casserole.</p>
</blockquote>

<cite>Blackadder</cite>
<blockquote>
<p>Yes. To you Baldrick, the Renaissance was just something that happened to
other people, wasn’t it?</p>
</blockquote>

Combining elements that have rich, semantic meaning to form compounds is an ideal way
to extend the meaning of your content.

Part 1: Discovery 85

01_TCSS-5_x.indd 8501_TCSS-5_x.indd 85 10/27/06 2:02:20 PM10/27/06 2:02:20 PM

Send me an hCard from San Francisco
Take a look at this photograph of San Francisco, one of my favorite cites in the world. Like
San Francisco itself, a lot is going on here; for instance, you can see a lot of streets with a
lot of buildings that contain a lot of businesses.

How do you think you would mark up a city like this? “With more markup than there
is room for in this book” would be one answer, but not the one I want. A more correct
answer would be “It depends.” Specifically, it depends on the information you are aiming
to convey.

Like all towns and cities great and small, San Francisco has streets, and those streets have
numbered buildings. This implies that if you were aiming to list the buildings in any one
street, then an ordered list would be the most appropriate element:

665 3rd Street, San Francisco, 94107, California

What if you are interested in marking up the address of a particular building? Your first
thought might be to grab hold of the nearest <address> element. Sadly, you would be
wrong.

Despite the unfortunate name of the <address> element, no element in XHTML was
designed for use with a physical address or location. And no elements exist that can
adequately describe a street, postal code, or state.

Earlier you were introduced to the concept of microformats to add more precise meaning
by using special class attributes on some elements. Here too you can work from the
content out and use microformats, in particular the hCard microformat, to create meaning
in your page.

You can enclose each line of your address in a element and give each line a precise
attribute to reflect the contents of that line:

665 3rd Street
San Francisco
94107
California

Note

The <address> element is possibly
one of the most badly named elements
in XHTML. It was not designed for
use with physical addresses but with
contact information for a particular
page, such as the e-mail address for
the author of the content.

86 Transcending CSS

01_TCSS-5_x.indd 8601_TCSS-5_x.indd 86 10/27/06 2:02:20 PM10/27/06 2:02:20 PM

01_TCSS-5_x.indd 8701_TCSS-5_x.indd 87 10/27/06 2:02:20 PM10/27/06 2:02:20 PM

In place of an <address> element, you should provide a context for these address parts by
enclosing them all in another element:

665 3rd Street
San Francisco
94107
California

Finally, you should add a class attribute of vcard to the list item to ensure both real
people and software applications can read the complete compound, one of the key benefits
of using microformats.

Learning to keep your eyes wide open
Looking around you and noting the implicit meaning of what you see can become an inter-
esting, if a little geeky, way to pass the time on journeys to and from your studio. Wher-
ever you go, you can extract meaning from the following:

 • Advertising hoardings and billboards

 • Signage

 • Shop window displays

In fact, you can extract meaning from almost anything in the world. If you, like me, don’t
get out as often as you should, look for semantics in the pages of newspapers or magazines
or on packaging. You’ll be surprised at how much nutritional, semantic information appears
on your box of morning cereal.

You should start seeing markup appearing before your eyes, everywhere you look. But if
you start hearing voices, I suggest you contact your doctor immediately.

Working from the “contents”
In fact, if you are similar at all to me, when you start thinking about the semantic meaning
of the objects around you, you will notice yourself wondering how to mark up almost every-
thing you touch.

88 Transcending CSS

01_TCSS-5_x.indd 8801_TCSS-5_x.indd 88 10/27/06 2:02:23 PM10/27/06 2:02:23 PM

1.26 Taking on a magazine layout

Flicking through the pages of magazines and newspapers, you will begin to wonder not
only what markup would be most appropriate to the content, but also how you might
accomplish a design element with CSS.

Given the example of a Contents page from a gardening magazine (Figure 1.26), let’s work
through how you might arrive at the meaningful markup to represent it.

Part 1: Discovery 89

01_TCSS-5_x.indd 8901_TCSS-5_x.indd 89 10/27/06 2:02:23 PM10/27/06 2:02:23 PM

1.27 Making notes

With an initial glance, you might first think about dividing this page into two columns,
using two divisions: one for the written content on the left and one on the right to hold
the images. But presentational thinking often results in presentational markup, and
 working outward from the content will help you achieve minimal, meaningful markup.

Scribble notes
You can use different techniques to help you visualize markup in cuttings you make from
newspapers or magazines; one of my favorite methods is to write notes either on the
cutting or on tracing paper taped over the cutting in my scrapbook (Figure 1.27). You
can scribble notes about the meaning of the content and your thoughts about the most
appropriate elements.

90 Transcending CSS

01_TCSS-5_x.indd 9001_TCSS-5_x.indd 90 10/27/06 2:02:35 PM10/27/06 2:02:35 PM

Visualize the magazine markup
Looking at this example, a number of elements spring immediately to mind:

 • A top-level heading, <h1>, for the word Contents because it is the most important
 heading on the page

 • Second-level headings, <h2>, for the words Gardens & Houses and Features

 • All contained in a division: a lower-level heading, <h3>; a list of page numbers and titles
that are featured on the cover, ; and a thumbnail picture of the cover of the maga-
zine,

But what about the two lists of articles and the images on the right? These require a little
more abstract thinking. But you might be surprised at just how simple the solutions to
problems like this can be when you start at the essence of the content.

Each contains the “title” of an internal page and a short description of what the
reader might find on that page if she turns to it. Headings—in this case, third-level
 headings, <h3>—can form the titles of the pages, and simple paragraphs, <p>, make up
the descriptions:

<h3>Seasonal Display</h3>

<p>Make an elegant Easter arrangement with the first-flowering spring shrubs</p>

Part 1: Discovery 91

01_TCSS-5_x.indd 9101_TCSS-5_x.indd 91 10/27/06 2:02:40 PM10/27/06 2:02:40 PM

1.28 Ordering the list

Order, please
Because the pages are listed in the order they appear in the magazine, an ordered list,
, will give extra meaning to the lists (Figure 1.28):

<h3>The Good Life</h3>
<p>Inspiration and practical advice for would-be smallholders. By Molly E.
Holzschlag.</p>

<h3>20/20 Vision: Ways to become village of the year</h3>
<p>Ensure your village stands out. By Patrick H. Lauke</p>
[etc.]

Add in links
You will also need to add links to other pages inside the headings for each article; after all,
you can’t have a page without at least one link, can you?

<h3>20/20 Vision: Ways to become village of the year</h3>
<p>Ensure your village stands out. By Patrick H. Lauke
</p>

That is essentially the entire structural markup you will need to convey the meaning of this
page’s content.

At this point you might be wondering, but what about the images? Where are the
elements? Where will they appear in the flow of the document? Remember when I said the
images would require a little more abstract thinking? Looking again at the images, you
will see that their function is to highlight particular articles by illustrating them with an
image and giving the reader the page number of that article. In essence, their function is
no different from any of the other article links you have so meaningfully placed inside your
ordered lists (Figure 1.29).

92 Transcending CSS

01_TCSS-5_x.indd 9201_TCSS-5_x.indd 92 10/27/06 2:02:41 PM10/27/06 2:02:41 PM

1.29 Highlighting particular articles

Place emphasis
Your next task is to identify these important articles individually and give them all addi-
tional semantic emphasis in your markup.

You can start by giving the list item for these special articles an individual identity, logi-
cally the page number on which the articles appear. Because XHTML does not allow an id
attribute to begin with a numeral, you can prefix your id attribute with a letter, in this
case p (for page):

<li id=”p89”>
<h3>Fresh spring styles</h3>
<p>Discover how to create three very different decorating schemes. By
Dori Smith and Drew McLellan
</p>

All four of these articles should be emphasized in some way as being featured articles;
luckily, the emphasis element, , is waiting and willing to help you.

You will wrap the emphasis around the name of each article and its link to the article page:

<li id=”p89”>
<h3>Fresh spring styles</h3>
<p>Discover how to create three very different decorating schemes. By
Dori Smith and Drew McLellan
</p>

You will use these id attributes and emphasis to style these featured articles differently
than you style all the others.

Complete the markup
Your completed markup has created a meaningful, well-ordered flow of “contents” ready to
be styled with CSS. Take a look at the completed markup, and compare it to the markup
guide to see the relationships between your elements and how the completed page will
look when styled with CSS (Figure 1.30 and Figure 1.31, next page).

Part 1: Discovery 93

01_TCSS-5_x.indd 9301_TCSS-5_x.indd 93 10/27/06 2:02:43 PM10/27/06 2:02:43 PM

1.30 Creating a well-ordered flow of contents

94 Transcending CSS

01_TCSS.indd 9401_TCSS.indd 94 11/2/06 2:24:16 PM11/2/06 2:24:16 PM

1.31 Marking up the content

Part 1: Discovery 95

01_TCSS-5_x.indd 9501_TCSS-5_x.indd 95 10/27/06 2:02:49 PM10/27/06 2:02:49 PM

01_TCSS-5_x.indd 9601_TCSS-5_x.indd 96 10/27/06 2:02:49 PM10/27/06 2:02:49 PM

Time to Process
What You Have Learned
Having learned about how to look for meaning in unusual places, how to give your markup
more precise meaning by combining elements into “compounds” and using microformats,
and how to separate the natural order of your content from your visual goals, it’s time to
start processing all this new information.

In Part 2, “Process,” you will take a fresh look at the design and development process. You
will learn some exciting new ways to start your designs, learn how to use wireframes more
effectively, and go step-by-step through the process of turning a design into a prototype
using meaningful markup and CSS.

Part 1: Discovery 97

01_TCSS-5_x.indd 9701_TCSS-5_x.indd 97 10/27/06 2:02:52 PM10/27/06 2:02:52 PM

