
02_TCSS-4.indd 9802_TCSS-4.indd 98 10/27/06 3:02:15 PM10/27/06 3:02:15 PM

2 Process

Find the perfect workflow.

Focus on interactive prototypes.

Follow best practices for creating prototypes.

99

02_TCSS-4.indd 9902_TCSS-4.indd 99 10/27/06 3:02:20 PM10/27/06 3:02:20 PM

02_TCSS-4.indd 10002_TCSS-4.indd 100 10/27/06 3:02:20 PM10/27/06 3:02:20 PM

Searching for a Perfect Workflow
During 2005 I worked with a company that was driven by technology and process rather

than creativity. Planning and procedures were considered more important than creative

experimentation. In this company, dry-wipe boards full of mantras and flow diagrams lined

the walls, making me almost long for those dreadful “soar like an eagle” motivational

posters so loved by business managers who read 1001 Ways to Energize Employees on their

days off!

Every day, designers and developers alike were subject to the ritual humiliation of report-

ing on what they had achieved the previous day and what they hoped to accomplish the

next. (Sometimes, out of sheer belligerence, I would say, “I thought about tabs.”) It was a

miserable experience that left us all handcuffed due to a rigid process that gave little room

for creativity.

Most Web design workflows continue to follow traditional patterns for design and develop-

ment. Despite the best intentions, adopting these outdated patterns can limit both your

creativity and your efficiency. They can also negatively impact how you work and how you

communicate with others during the process.

Looking for a better way
Visiting with a variety of other designers in organizations and companies large and small,

I see many similarities with my own experiences, particularly in the way designers often

work separately from the technical developers and others working on the same project.

Part 2: Process 101

02_TCSS-4.indd 10102_TCSS-4.indd 101 10/27/06 3:02:25 PM10/27/06 3:02:25 PM

We need to find a better way, one that values the creative process, enhances the overall

quality of the final product, and improves the working relationships between all involved.

The key to developing a new process is to give everyone a central point around which to

focus. This focal point should not be presentation, as it has been in the past, but the

meaningful content that we convey to our visitors. And although some of the techniques

that designers and developers have used in the past still have many merits, these tech-

niques are often disconnected from each other. To work more effectively, we need a way

to better connect them.

The Web is a dynamic and interactive medium. The best way to join these disconnected

tasks is to focus the efforts of everyone involved—information architects and others work-

ing primarily with content, visual designers, and technical developers—on the same things

that make up the essence of the Web. Using content, meaningful XHTML markup, and CSS

to develop interactive prototypes makes the connection and helps designers, developers,

and other specialists do their jobs better and more efficiently.

It’s easy to understand why many devices of the early planning stages—content site maps,

flow diagrams, and wireframes—use static images, but the Web is an interactive medium.

Whereas wireframes and static designs can only hint at the interactivity of a finished Web

site, interactive prototypes can do so much more. To make the most of the medium, we

should work using the medium.

02_TCSS-4.indd 10202_TCSS-4.indd 102 10/27/06 3:02:25 PM10/27/06 3:02:25 PM

Why should we do this?
We should create a new workflow for the following reasons:

 • To improve our knowledge and understanding of all parts of the design and development

process

 • To help us better communicate the organization and relationships in content

 • To convey this meaning and these relationships through our visual designs and layouts

 • To improve our efficiency and enable technical developers to implement a design and

add functionality much earlier in the process

In this part, you will find new ways to make all this happen. You will learn best practices

for making wireframes and interactive prototypes and will finish by making an interactive

prototype using all the techniques you learn about in this part.

Following a content-based process
Content is often said to be king, a king who demands the attention of everyone in the

design and development life cycle, including information architects, user experience and

accessibility strategists, visual designers and technical developers, and copywriters and

editors. Content in the form of text, links, photos, audio, and video is the foundation of

any site.

02_TCSS-4.indd 10302_TCSS-4.indd 103 10/27/06 3:02:27 PM10/27/06 3:02:27 PM

In Part 1, “Discovery,” you were introduced to the content-out approach to markup. Taking

this approach a stage further, you will see how this approach creates an opportunity

for you to build a completely new type of workflow. In this new process, content is the

primary focus, influencing every stage of planning, designing, and developing. The content-

based process includes many familiar steps (Figure 2.1, left to right):

 1. Gather the content.

 2. Work with wireframes to organize and present that content.

 3. Create static designs to demonstrate creative concepts and layout ideas.

 4. Write meaningful markup that structures the content.

 5. Work with CSS to implement the design.

2.1 Following the steps of a content-based process

104 Transcending CSS

02_TCSS-4.indd 10402_TCSS-4.indd 104 10/27/06 3:02:28 PM10/27/06 3:02:28 PM

All these steps lead to the creation of an interactive prototype, which you can use to

better communicate with everybody on your team and with your clients. The interactive

prototype helps designers make design iterations and refinements and test them with visi-

tors and with clients. The interactive prototype also provides a solid platform for technical

developers to create fully interactive experiences with scripting and programming.

If by now your heart is pounding in anticipation, start by looking at gathering content

from your clients and other sources.

Part 2: Process 105

02_TCSS-4.indd 10502_TCSS-4.indd 105 10/27/06 3:02:29 PM10/27/06 3:02:29 PM

As long as we have the outline and breakdown

of how content is organized and prioritized on

a page, we do not need to have the final content

in place until the site is completely built.
KELLY GOTO, Goto Media

www.wise-women.org/features/kelly_goto/

02_TCSS-4.indd 10602_TCSS-4.indd 106 10/27/06 3:02:29 PM10/27/06 3:02:29 PM

Gathering Your Content
Goto’s assertion (facing page) that “we do not need to have the final content” is effective

when you are working at a higher level and are dealing with the overall shape and struc-

ture of your pages. However, this process breaks down when working with the specifics of

markup. This perspective begs the question, how do you convey the meaning of content

through markup when you have no precise content to work with?

Note: It has been a common working practice in both print and Web design for designers to
lay out their pages using Greeking text (the familiar Lorem Ipsum). Other designers prefer to
use short paragraphs of text from works in the public domain, such as Moby Dick, or covered
under the Creative Commons license. Mock text doesn’t provide the meaning you want in
order to begin immediately marking up your documents semantically.

Ensuring that content is delivered on time and in the right format is not only a concern for

visual designers and technical developers. Information architects and others who orga-

nize content also depend on it, as visual designers and even search engine optimization

specialists.

You have many ways to ensure you receive content so your job can run more smoothly:

 • Work with your clients to create inventories of existing content.

 • Provide your clients with a new content brief, which gives an overview of the new con-

tent that will likely be required and who will be required to work on the different areas.

 • Include milestone dates in your contracts, and use Basecamp or even a simple spread-

sheet to keep track of content delivery.

Note: You can learn more about content briefs from D. Keith Robinson’s article “Content
Brief” at www.7nights.com/asterisk/archives05/2005/05/content-brief. You can learn about
the collaborative project management tool Basecamp at www.basecamphq.com.

Part 2: Process 107

02_TCSS.indd 10702_TCSS.indd 107 11/2/06 2:26:18 PM11/2/06 2:26:18 PM

02_TCSS-4.indd 10802_TCSS-4.indd 108 10/27/06 3:02:30 PM10/27/06 3:02:30 PM

Working with Wireframes
Traditional wireframes are black-and-white diagrams that illustrate blocks of content, navi-

gation, or functionality. They have been a familiar sight to Web designers and developers

and are broadly understood by both clients and Web professionals (Figure 2.2).

2.2 Detailing a wireframe

Part 2: Process 109

02_TCSS-4.indd 10902_TCSS-4.indd 109 10/27/06 3:02:32 PM10/27/06 3:02:32 PM

Used as a tool to communicate content and structure without the distractions of color

and imagery, wireframes remain an important part of the design process.

They can help designers do the following:

 • Storyboard a visitor’s path through a site.

 • Work quickly through a series of layout iterations (Figure 2.3) before the costly job

of creative design and technical development begins.

Although wireframes are not quite shake-and-bake, almost anyone can easily create wire-

frames with OmniGraffle from the Omni Group or even PowerPoint from Microsoft, with

little or no knowledge of Web technologies. Just like pouring boiling water onto an instant

Pot Noodle, using common software to create simple wireframes is easy. It is perhaps

because of this ease that many people have come to regard making wireframes as an inex-

pensive way of proofing concepts.

2.3 Working through a series of layout iterations

110 Transcending CSS

02_TCSS-4.indd 11002_TCSS-4.indd 110 10/27/06 3:02:32 PM10/27/06 3:02:32 PM

Where traditional wireframes fail
Frederick Barnard has been credited with saying “a picture is worth a thousand words” in

the advertising journal Printer’s Ink. Sadly, what worked for Barnard in 1921 is not alto-

gether relevant eighty-five years later. However much care you take in creating them and

however detailed or well annotated you make them, traditional wireframe images can only

hint at what will become rich content and navigation on the Web.

Images work just fine for static designs to show creative concepts, color, and typography,

but using them as prototypes for interactive Web pages is flawed from the start. Using

images makes it difficult to mimic even the simplest forms of interaction such as :hover,

:focus, or :target states (Figure 2.4).

A further drawback of wireframes is that they are often created long before a visual

designer begins the job of creating page-layout concepts. Sometimes they include not only

information about content and relationships, but also page-layout instructions such as the

location of branding and content areas, sidebars, navigation, and footers.

Many visual designers, when presented with wireframes that contain so much detail, feel

they have little room to express their creativity. Decisions over design and layout have

already been made before the job of visual design has even started. Cases like these are

common and problematic because the designer’s valuable input has been overlooked.

2.4 Using images makes it hard to
show interaction

02_TCSS-4.indd 11102_TCSS-4.indd 111 10/27/06 3:02:32 PM10/27/06 3:02:32 PM

Although traditional wireframes can provide a broad indication of a finished product, they

are often mistakenly used as benchmarks for how a layout will ultimately look. Worst

of all, they reinforce the idea that Web pages should be pixel-perfect reproductions of

frozen images. Often, they lock a design into one fixed display type and rarely take into

account the need to design for users of alternative browsers, such as screen readers or

mobile devices.

Are wireframes a good value for the money?
It is a popular misconception that making wireframes is an inexpensive part of design

and development; in the context of a modern workflow, they represent much less value for

the money.

Prototyping of any kind is often thought to involve working on materials that will ulti-

mately be discarded before creating a final product. If you start your process with images

as a wireframe, you can quickly turn this notion into a self-fulfilling prophecy. When I look

at the hundreds of wireframes I have made, all now gathering digital dust in my archives,

I can picture the thousands of hours that went into creating them. Because I approached

these wireframes as part of a throwaway process, that is exactly what they became.

In addition, they may seem quick and easy to make, but in reality wireframes rarely con-

sider every aspect of the complex nature of interactive Web pages. Issues such as pagina-

tion, error or status messages, and visitor feedback are rarely tackled at the wireframing

stage, and by not including them, the missing work is simply moved to a stage later in the

process (Figure 2.5).

2.5 Dealing with error messages

Improving the approach using
granular wireframes

To help avoid being overly prescriptive
and dictating the complete layout of
a page, some have advocated using
more granular wireframes. These break
down important features into smaller
pieces, such as the following for a Web
application or an e-commerce site:
account creation, customer sign-in,
customization options, e- commerce
checkout, navigation, and search
interfaces.

This type of wireframe helps designers
stay creative, because they do not
specify the layout of an entire page.
However, they are still far from ideal:

 • They lack the capability to describe
the semantic meaning of elements
or the relationships between them
to visual designers.

 • Despite their precision, they often
fail to describe in sufficient detail
all the information that technical
developers need to understand com-
plex functionality or interactivity.

112 Transcending CSS

02_TCSS-4.indd 11202_TCSS-4.indd 112 10/27/06 3:02:33 PM10/27/06 3:02:33 PM

Finally, wireframes rarely convey all the complete information, and a range of supporting

material such as site maps, page descriptions, or functional specifications almost always

accompanies them. On large-scale projects, writing, reading, and keeping track of this

documentation can add to the complexity and costs involved.

Traditional wireframes and interaction
If the simple interaction of a flexible, liquid layout is hard to convey using images, try to

imagine how difficult the complex functionality now common on sites using interactive

media such as Macromedia Flash and technologies such as Ajax and DOM (Document Object

Model) scripting might be. Jeffrey Zeldman may have said it best:

Wireframing Ajax is a bitch.

—Jeffrey Zeldman (www.alistapart.com/articles/web3point0)

When you are designing e-commerce sites similar to Amazon, you can more easily convey

the process of adding an item to a shopping cart and proceeding through the checkout

process using images (Figure 2.6). Even some of Amazon’s slickest user features such as

1-Click ordering present no real challenges to an experienced designer.

2.6 Wireframing exercise with a one-click order process

Part 2: Process 113

02_TCSS-4.indd 11302_TCSS-4.indd 113 10/27/06 3:02:34 PM10/27/06 3:02:34 PM

Note: For more thoughts on prototyping Ajax, read Kevin Hale’s article “A Designer’s Guide to
Prototyping Ajax” at http://particletree.com/features/a-designers-guide-to-prototyping-ajax/.

But in Ajax-driven applications, where users can invoke complex behaviors with simple

text input or a mouse click, images are rarely capable of describing sufficient detail on

a single screen.

An interesting case in point is Flickr, Yahoo’s popular photo storage and sharing applica-

tion. Flickr is a complex mix of markup, CSS, Flash, and Ajax that gives its visitors an

immersive user experience. Some of Flickr’s tools, such as adding a tag, editing a title, or

changing a description, might cause fewer headaches in wireframing with images.

Flickr’s more complex user features for adding a note to a photo or organizing photos into

sets through its drag-and-drop interface would prove extremely difficult to represent in a

traditional wireframe with even a long series of images.

Proofing functionality of this complexity would be a tough job for even the most patient

designer and would involve creating images of every stage of user interaction, clearly a job

few designers would relish.

02_TCSS-4.indd 11402_TCSS-4.indd 114 10/27/06 3:02:34 PM10/27/06 3:02:34 PM

Many variables get overlooked when creating

wireframes or other paper documents.

Factors such as state, security, error messages,

level of effort, page flow, DOM scripting

and other dynamic elements can be ignored

or misrepresented.
 GARRETT DIMON

www.digitalweb.com/articles/
just_build_it_html_prototyping_and_agile_development

02_TCSS-4.indd 11502_TCSS-4.indd 115 10/27/06 3:02:35 PM10/27/06 3:02:35 PM

02_TCSS-4.indd 11602_TCSS-4.indd 116 10/27/06 3:02:36 PM10/27/06 3:02:36 PM

Improving the Approach
with the Grey Box Method
With many people unhappy about the limitations of traditional wireframes, we needed to

find a new answer to the question of how to communicate the organization and relation-

ships of content to each other, without being too precise or limiting creative options. One

solution has come from the everyday work of a visual designer, Jason Santa Maria.

This solution is based on using a series of simplified grey boxes as the starting point of the

graphic design process. When extended to other roles, grey boxes encourage information

and content specialists to define only the loose placement of content areas; this leaves

designers free to make the important decisions over layout and composition.

The grey box method does the following:

 • Allows the design process to be spread over shorter stages

 • Places focus only on the structural elements of the page design

 • Allows designers to work creatively without limiting their options

From its simple beginnings, the grey box method is appealing because it allows you to

extend its approach to suit many of the situations and environments you may find yourself

working in.

Note: You can read Jason Santa Maria’s original “Grey Box Methodology” article at
www.jasonsantamaria.com/archive/2004/05/24/grey_box_method.php.

Annotations and
page descriptions

When you need more detail than
simple grey boxes can deliver, you can
add short notes about specific content
and relationships. When you need
further detailed explanations, you can
use accompanying page description
documents to express other key issues
and goals.

This combination of grey boxes,
notes, and descriptions is also highly
effective during conversations with
clients, because the combination can
rarely be misinterpreted for anything
other than what it is; in addition, the
combination does not set design or
layout expectations.

Part 2: Process 117

02_TCSS-4.indd 11702_TCSS-4.indd 117 10/27/06 3:02:36 PM10/27/06 3:02:36 PM

02_TCSS-4.indd 11802_TCSS-4.indd 118 10/27/06 3:02:36 PM10/27/06 3:02:36 PM

Using symbols to add greater detail
Sometimes you will need to provide more detail in a visual way. Developing a library of

reusable graphic components, or symbols, that provide this extra level of detail and can be

dragged and dropped on grey boxes can be highly effective.

For much of my own design and layout work, my preferred layout application is Macromedia

Fireworks, not least for its capability to store graphic symbols that I use from project to

project in its library. I have made a simple symbol for each of the common user interface

elements I use on a regular basis (Figure 2.7):

 • Grid design variations

 • Greeking text

 • Common e-commerce interface elements

 • Search areas

 • Form fieldsets and other form elements

Tip: This technique is also possible in other graphic and layout tools.

You should keep these symbols deliberately minimal and free from any creative flourishes.

By dragging and dropping these symbols on grey boxes, you can add more detail to the

parts of your wireframes that require it.

Tips for working with grey boxes

Grey boxes can help make collabora-
tion between information architects,
visual designers, and technical devel-
opers better.

When organizing information for Web
sites, you can implement the follow-
ing tips to better relate your work
to the work of visual designers and
developers while at the same time
preserve the meaning of the content
relationships you have defined:

 • Define the source order of the
content.

 • Think about how that content will
look without style; will it be easy
to read, and will the order make
sense?

 • Visually highlight any relationships:
This will ultimately help identify
necessary divisions and show
areas of similar but not related
information.

 • Use established naming conventions

2.7 Several elements created in Fireworks as “symbols”

Part 2: Process 119

02_TCSS-4.indd 11902_TCSS-4.indd 119 10/27/06 3:02:38 PM10/27/06 3:02:38 PM

2.8 Creating a static design

02_TCSS-4.indd 12002_TCSS-4.indd 120 10/27/06 3:02:38 PM10/27/06 3:02:38 PM

Creating Static Designs
Static designs are important in conveying ideas about look and feel, page layouts, and

interface designs to clients and other stakeholders (Figure 2.8). Although static designs

should indicate how the finished product will look, they are also mistakenly used as bench-

marks, leaving little room for later flexibility or even behaviors such as liquid page layouts.

Many designers have asked when static design visuals, or comps as they’re often referred

to, fit best in a contemporary Web design workflow. Should they come at the beginning?

Should they come before making wireframes or grey boxes, or should they come later? The

answer will depend on your own working environment.

To answer this question, you should ask yourself, what purpose are these static designs

going to accomplish? If they are designed to illustrate only general shape and style, you

can work on them throughout the process and refine them right up until the end because

the specific details of the layout may not depend on them. However, if static designs are

intended to show the specifics of layout details, they will likely be completed and signed

off on far earlier in the process.

Moving faster through the design workflow
In the past, finalizing and signing off on static designs has always preceded other stages

in the design and development process. Writing markup and CSS waited while static designs

were completed, and it was even less likely that expensive activities such as scripting or

programming would start until later.

One of the most important advantages of the content-based workflow is that these other

areas of work do not have to wait until static designs are complete. Grey boxes and other

supporting materials can give not only visual designers but also technical developers and

others all the information they need, giving them a head start to begin their work from the

same basis of content as designers.

Even when markup has been written and perhaps more complex functionality added to a

prototype, visual designers can continue to experiment with design ideas or even different

layouts, safe in the knowledge that CSS will allow them to implement their designs without

breaking the work of other people in their team (Figure 2.9). 2.9 Giving variety to layout

Part 2: Process 121

02_TCSS-4.indd 12102_TCSS-4.indd 121 10/27/06 3:02:39 PM10/27/06 3:02:39 PM

Adding markup guides to static designs
Markup guides are designed to show the simple outline of the markup that is most appropri-

ate to convey the meaning of any element during the design process. They do this directly

on the static design and can be used to do the following:

 • Show the hierarchy or structure of the content.

 • Help advise technical developers of the most appropriate markup to use.

Imagine for a moment that a visual designer shows two blocks of text. The first is plainly

styled; the second is styled bolder and in larger type. One problem that technical dev-

elopers often face is how to interpret the visual design as markup when the precise mean-

ing of an element is not obvious through the visual design. For example, in Figure 2.10,

can you tell that the second block of text is a quotation rather than a normal paragraph?

Whether you choose to work on paper by printing your grey boxes and writing your markup

and any accompanying notes onto that or to work electronically by adding the guides

directly to your grey box files, using markup guides will help everyone involved in the

process (Figure 2.11).

Markup guides as training aids

Some information architects and
designers who are new to the concepts
of semantics and writing meaningful
rather than presentational markup find
it difficult to relate a visual layout to
XHTML.

Markup guides help them visually
associate markup to design. Working
regularly with these guides can help
demystify markup and the XHTML ele-
ments that are commonly used.

2.10 Highlighting the difficulties when precise meaning is not obvious

122 Transcending CSS

02_TCSS-4.indd 12202_TCSS-4.indd 122 10/27/06 3:02:40 PM10/27/06 3:02:40 PM

2.11 Laying markup over a static design

Part 2: Process 123

02_TCSS-4.indd 12302_TCSS-4.indd 123 10/27/06 3:02:41 PM10/27/06 3:02:41 PM

02_TCSS-4.indd 12402_TCSS-4.indd 124 10/27/06 3:02:41 PM10/27/06 3:02:41 PM

Using Interactive Prototypes
It’s easy to understand why many devices of the early planning stages—content site maps,

flow diagrams, and wireframes—use static images, but the Web is an interactive medium.

Whereas wireframes and static designs can only hint at the interactivity of a finished Web

site, interactive prototypes can do so much more. To make the most of the medium, we

should work using the medium.

By creating interactive prototypes using valid, meaningful markup and CSS, designers can

use the prototypes to demonstrate their designs, and developers can easily add more func-

tionality with Ajax and related technologies to create a fully working prototype.

You might at first think that making prototypes using hand-coded XHTML and CSS would

take more time than creating images, particularly if you have experience with your wire-

framing application or have a library of reusable symbols you use by dragging and dropping.

However, using XHTML and CSS does allow you to work faster:

 • You can use one or multiple CSS files to lay out your prototypes.

 • You can use CSS styles for layout, color, and typography across any number of pages.

 • You can make rapid changes without changing your markup.

 • You can preview multiple design variations using the same content.

These interactive prototypes also enable visual designers to make faster and more frequent

design iterations, try new ideas, and rearrange layouts, all without altering the structure or

order of the content.

Interactive prototypes make it real
When you demonstrate your designs in a Web browser, you allow your clients to interact

with them in a more meaningful way. Rather than them imagining how a feature might

appear from looking at an image, they can interact with it directly, even though it may not

be fully functional, reducing the opportunities for misunderstandings.

Part 2: Process 125

02_TCSS-4.indd 12502_TCSS-4.indd 125 10/27/06 3:02:43 PM10/27/06 3:02:43 PM

If you are following modern Web standards

practices, these pages are probably built with

XHTML for structure and CSS for markup.

XHTML is an excellent structure that can

serve as the basis for a wireframe that can later

be transitioned into a prototype and eventually

designed via CSS.
NICK FINCK

www.blueflavor.com/ed/information_architecture/
recyclable_information_archite.php

02_TCSS-4.indd 12602_TCSS-4.indd 126 10/27/06 3:02:43 PM10/27/06 3:02:43 PM

Clients become engaged when they can interact with HTML wireframes. Clients not only

enjoy the process more, but they also get a better contextual understanding of the features

than with paper prototypes.

— Jeff Gothelf, Boxes and Arrows (www.boxesandarrows.com/

view/practical_applications_visio_or_html_for_wireframes)

Interactive prototypes are powerful tools for presenting your designs to your clients. When

clients provide feedback, you can implement suggestions immediately; if the changes don’t

work, your clients will see the results right away, and you can easily roll back to a previ-

ous iteration. Working in this way rapidly speeds up the process of gaining client approval

for your designs, even when working with clients spread across different continents and

time zones.

Creating reusable code
When you develop using meaningful markup and CSS, you can reuse much of your work.

This will save you significant amounts of development time because your work is far less

likely to need duplicating. When you follow the same strict coding practices as you would

when making your final product, your work during prototyping will not be thrown away.

If you approach your work with the goal of keeping and reusing it, then most everything

you do will survive to the end. By adopting this method, you will almost always increase

your speed and reduce costs for your studio, organization, managers, and clients.

Model behavior for wireframes and prototypes
With new ways of improving communication between all of those working on organizing

content, it is time to learn best practices and learn how to use a Web browser and a range

of extensions for organizing your style sheets efficiently.

Part 2: Process 127

02_TCSS-4.indd 12702_TCSS-4.indd 127 10/27/06 3:02:43 PM10/27/06 3:02:43 PM

WYSIWYG: What you see, or short-sighted?
The WYSIWYG design environment in applications such as Macromedia Dreamweaver, with its

built-in templates and drag-and-drop library items, have already played a large part in the

transition to using HTML for prototyping. These tools have made it far easier for people to

make HTML prototypes without a wide knowledge of markup, CSS, or best practices.

With WYSIWYG editors being designed to create the markup for you, you might at first think

that hand-coding XHTML and CSS would take more time and be less efficient than using

a WYSIWYG editor, particularly if you have experience with your wireframing application

or have a library of reusable assets that you use by dragging and dropping. But that isn’t

necessarily the case.

The following are some advantages of using XHTML and CSS prototypes over those created

with WYSIWYG editors:

WYSIWYG Standards-based markup and CSS

Requires you to buy a WYSIWYG application
such as Dreamweaver or Adobe GoLive.

Requires only a basic Web editor or plain-text
editor such as Notepad for Windows or TextEdit
for Mac OS X.

Requires you to be experienced in an
application that will rarely be useful in
developing the final pages.

Requires you to have only a basic knowledge of
markup and CSS.

Your markup is likely to be presentational and
more likely to be difficult to maintain and
reuse.

Your markup will be structured, well ordered, and
meaningful. You will reuse much of your markup
and CSS.

Changes to your visual layout will often
require you to change markup and source
order across many pages.

Editing linked or imported CSS files can update
any number of pages from only one file.

128 Transcending CSS

02_TCSS-4.indd 12802_TCSS-4.indd 128 10/27/06 3:02:43 PM10/27/06 3:02:43 PM

In the same way an author makes an outline

before writing a book, [the grey box method]

serves as my visual outline before creating

a design. Breaking this into steps makes you

consider your design choices and foundation

before you are swept away by the details

of your visual decisions.
JASON SANTA MARIA

www.jasonsantamaria.com/archive/2004/05/24/grey_box_method.php

Part 2: Process 129

02_TCSS-4.indd 12902_TCSS-4.indd 129 10/27/06 3:02:43 PM10/27/06 3:02:43 PM

02_TCSS-4.indd 13002_TCSS-4.indd 130 10/27/06 3:02:43 PM10/27/06 3:02:43 PM

Following Best Practices for
Interactive Prototyping
It is important to understand that even though I present the steps in a linear order, the

process is not. The content-based process is not a set of hard-and-fast guidelines but a

series of steps to improve your workflow, whether you are a lone designer with multiple

roles or you work as part of a larger team.

Choosing a development browser
When developing, testing, and demonstrating your interactive prototypes, you should avoid

the quirks and issues of older browsers. Having a stable browser platform to act as your

development environment and sticking with it throughout the workflow process is essential.

It is important to let others know about your choice so they understand that if they look at

your work in any different browser, the results may not look the same.

Your choice of browser will depend on several factors. If you are designing for an inter-

nal company environment where the majority of people reading your pages use Microsoft

Internet Explorer 5 on Windows 2000, Explorer 5 might, sadly, be the most logical choice

because even after several years this browser still ships as part of that operating system. It

might also be appropriate to choose Safari if your visitors largely use that browser. Using a

browser that has strong support for CSS and a range of development tools available to work

with it will make the job of developing and testing that much easier.

Using browser extensions
Although Internet Explorer 7 has its own tools and a developer toolbar, Mozilla Firefox is

the development browser most standards-aware designers will choose because of the sheer

quantity and quality of its developer extensions. The Mozilla Web site currently contains

more than 190 developer extensions for Firefox, with more being added almost daily.

You will be using browser extensions throughout the exercises in this book. Two of my

favorite extensions for Firefox are Chris Pederick’s Web Developer extension and Firebug.

Note: You can find the developer extensions for Firefox at http://addons.mozilla.org/.

Part 2: Process 131

02_TCSS-4.indd 13102_TCSS-4.indd 131 10/27/06 3:02:45 PM10/27/06 3:02:45 PM

2.12 The Show Element Information feature in the
Web Developer extension

2.13 Using Firebug to explore the DOM

Use the Web Developer extension
The most essential developer extension is Chris Pederick’s Web Developer extension for

Firefox and other Mozilla browsers. Pederick’s browser toolbar extension includes so many

useful features that an entire book could be written (and perhaps will be) on how to use it

(Figure 2.12).

Note: Download the free Web Developer extension at http://chrispederick.com/work/
webdeveloper/.

Explore the DOM with Firebug
Firebug is a useful Firefox extension that makes it easy to explore the DOM. Firebug then

logs JavaScript, CSS, and other errors to a console. You can also use your keyboard to move

through the DOM, and any node you select will be highlighted in the page (Figure 2.13).

Note: You can find Firebug at http://addons.mozilla.org/firefox/1843/.

132 Transcending CSS

02_TCSS-4.indd 13202_TCSS-4.indd 132 10/27/06 3:02:46 PM10/27/06 3:02:46 PM

Live editing your CSS with the Web Developer extension
Some of the powerful tools within the Web Developer extension are
the controls for the specific CSS files and styles that are loaded into
the browser. These tools make it simple for you to change the look of
your prototype page without directly editing your CSS files in an exter-
nal editor, and this process is particularly effective when you want
immediate feedback.

One of the most useful features of the Web Developer extension is the
Edit CSS panel, which allows you to change styles and then preview
the results without ever leaving your browser.

Imagine for a moment that your client or manager has had feedback
from user tests. The tests tell you that the default type size you origi-
nally chose is too small to meet their needs. This is not an unusual
comment, so don’t take it to heart; many designers love text so
small that it can leave older visitors with their noses pressed against
the screen.

Select Edit CSS from the toolbar menu, and a panel will appear with
all the styling information from your inline styles and external style
sheets, all organized neatly into tabs.

To change your base font size, select the correct tab (here typography.
css), and increase the percentage text size that you defined on the
<body> element:

body {
font : 82%/1.5 “Trebuchet MS”, “Lucida Grande”,”Lucida
Sans Unicode”, Verdana, sans-serif; }

The results will appear immediately in the browser.

When any changes have been approved, use the Edit CSS panel to save
the new font size to your external style sheet.

Working directly in your development browser can save you consid-
erable time. You can try, test, and (if successful) save even large-
scale changes to layout, all without ever reaching for your favorite
Web editor.

Part 2: Process 133

02_TCSS-4.indd 13302_TCSS-4.indd 133 10/27/06 3:02:46 PM10/27/06 3:02:46 PM

Keeping your <div> elements to a minimum
Adding more <div> elements than necessary will make the likelihood of errors far greater.

To avoid this problem during the markup phase, you should keep your markup as minimal

as possible.

Start with only structural elements such as headers, paragraphs, lists, and quotations, and

work from the content out, before adding any divisions.

Then, keep your <div> elements to a minimum, adding them progressively as needed but

not more than you need. This approach will help you keep your working documents and the

final prototype as free from presentational or unnecessary markup as possible.

Ensuring your markup stays valid
Poorly written markup will always eat into your valuable time by forcing you to first find

errors and then correct them. Testing your markup regularly to ensure that no validation errors

have slipped in is not only wise, but it can be essential to working efficiently. Writing valid

markup will pay dividends; it will reduce any margin for error and give you a firm foundation

on which to build your designs.

Choosing positioning over floats
Using floats has become almost a de facto standard method for creating column layouts

using CSS. Floats were originally not intended for page layout, but they do their best of

a tough job. However, they have a fragility that can often lead to frustration during this

phase because sometimes all it takes for float-dependent layouts to fall apart is the addi-

tion of italicized text or an image that is a single pixel wider than the floated column that

contains it.

The solution lies in CSS positioning. Understanding the basics of absolute, relative, and

fixed positioning can sometimes be more difficult than understanding the relative simplic-

ity of floats. However, mastering positioning with its enormous potential for layout flex-

ibility and its more robust behavior will be one of the most rewarding challenges you can

take on when learning CSS.

Whereas float-dependant layouts can easily fall apart at the slightest nudge, positioned

layouts can support supersized images or gigantic text without failing, making them ideal

Tip

The HTML Validator extension for
Firefox and the Safari Tidy plug-in
for Safari will nag you by showing
warning icons in your browser’s status
bar when your pages contain errors.
Validation is a great learning tool as
well. Be forewarned! No matter how
well your site might conform, many
content management systems and
ad server services will add invalid
code. Many designers and developers
have no control over this. Still, using
validators is an important part of the
process that should be built into your
workflow.

134 Transcending CSS

02_TCSS-4.indd 13402_TCSS-4.indd 134 10/27/06 3:02:49 PM10/27/06 3:02:49 PM

to use during this phase. Although you may later choose to rework the CSS to use floats

and some positioning, the generally accepted current recommendation is to use positioning

in this phase and make changes later.

The problem with floats
Contemporary Web browsers follow the W3C (World Wide Web Consortium) specification

in which a 200-pixel-wide element, such as a division, should always be 200 pixels wide.

Wider elements placed inside it would simply stick out of the side; the result might look

ugly, but the layout will remain intact (Figure 2.14).

The developers of early versions of Internet Explorer had other ideas. They developed

their browser to expand a container to fit the width of its contents. So, the same 200-

pixel-wide column containing a 220-pixel-wide image would expand to 220 pixels. This

can cause a floated column to drop underneath its neighbor column, breaking your layout

(Figure 2.15).

Although you can solve problems with floats when you have more time, time is often in

short supply when you are making your prototypes.

2.14 Sticking out of the side of a parent element

2.15 A floated element dropping down

Part 2: Process 135

02_TCSS-4.indd 13502_TCSS-4.indd 135 10/27/06 3:02:49 PM10/27/06 3:02:49 PM

PNG alpha transparency in the workflow
During the static design phase, the background colors of your columns and other divisions

are likely to change more than once. Few jobs can be more frustrating than creating and

exporting images several times over to ensure that their background colors match that of

the CSS background-color value.

If you are working with a browser with PNG alpha transparency support as your develop-

ment environment, using PNG images in place of transparent GIF images can save you many

hours of frustrating work (Figure 2.16).

PNG images make it possible for you to export a single set of images with alpha-

 transparent backgrounds and then change the background colors in your style sheets as

many times as you need, without ever returning to your image editor.

Organizing your CSS
So many different ways to organize and comment on your CSS files exist that if a group

of CSS designers were to meet for a drink in pub, a discussion over which method is best

would no doubt last well beyond closing time.

Note: The Mozilla.org Markup Reference is a wonderful example of how to document stan-
dards for authoring markup and CSS (www.mozilla.org/contribute/writing/markup).

As your style sheets become longer and more complex, organizing your styles into a clearly

understandable structure is essential. Organizing styles helps you write more efficient CSS

and ensures that others can easily understand and edit your CSS documents. Of course,

every designer will have a preferred method.

Organizing by location
Some organize their rules by divisions, with all the #branding rules in one group and all

the #content rules in another:

/* =content_main */
div#content_main { width : 70%; }
div#content_main p { font-size : 100%; }
div#content_main p > a { text-decoration : underline; }

2.16 PNG versus GIF transparency

136 Transcending CSS

02_TCSS-4.indd 13602_TCSS-4.indd 136 10/27/06 3:02:51 PM10/27/06 3:02:51 PM

/* =content_sub */
div#content_sub { width : 30%; }
div#content_sub p { color : #666; }
div#content_sub p > strong { font-weight : normal; }

Marking sections in your CSS
Making sections easily distinguishable from each other by using a combination of CSS

comments, section markers, and dashes as separators is one method to help you and later

developers find certain rules and know which rule applies to which part of your design:

/* Main content
 --- */

This method of highlighting the start of each section can save you time when trouble-

shooting or returning to a project several months after first writing your CSS.

Organizing by element
Others prefer to organize their rules by element, grouping all the headings, paragraphs, and

lists together:

/* p */
p { line-height : 110%; }
blockquote p { padding-left : 1em; }
div#site_info p { text-align : center }

/* ul */
ul { list-style-type : disc; }
div#nav_main ul { list-style-type : none; }
div#content_sub ul { border : 1px solid #ccc; }

CSS flags
Adding a simple flag, perhaps the = character immediately before your commented section

marker text, can help finding and jumping to that section much easier:

/* =p */

Using your text editor’s Find command to find =p will take you straight to your section for

paragraphs and will ignore erroneous results such as list-style-type or padding.

Part 2: Process 137

02_TCSS-4.indd 13702_TCSS-4.indd 137 10/27/06 3:02:51 PM10/27/06 3:02:51 PM

Dividing your CSS into multiple files
Whereas people might disagree over whether a single, linked, or imported CSS file is more

manageable in a final product than many separate ones, you can best solve that argument

by studying the context of the situation. One fact is certain, however; while building the

interactive prototype, using multiple files has distinct advantages.

For example, you could break a prototype into the following separate files:

 • Layout styles including display properties, floats and positioning, widths and heights,

and padding and margins (layout.css)

 • Color styles including background properties, colors, and images, as well as text colors

(color.css)

 • Typographical information including font families and sizes, line heights, letter spacing,

and text decorations (type.css)

For simplicity and to reduce the number of style sheets that are linked to and from your

markup, you might choose to link to one file and import your additional style sheets into

that using the @import at-rule.

To work correctly, your imported style sheets must appear at the top of the style sheet

above any other rules:

@import url(color.css);
@import url(type.css);
[remaining layout.css rules]

So far, you have learned that using meaningful markup and CSS to make interactive pro-

totypes will help you achieve lightweight, semantic code; accessible content; and flexible

design. This kind of prototype also helps you communicate more efficiently with your col-

leagues and clients.

138 Transcending CSS

02_TCSS-4.indd 13802_TCSS-4.indd 138 10/27/06 3:02:51 PM10/27/06 3:02:51 PM

HTML prototyping and full-on agile

development of Web applications are

increasingly viable options that help minimize

communication gaps and assumptions and

deliver more accurate results sooner. If you

haven’t considered it, now may be the time.
GARRETT DIMON

www.digital-web.com/articles/
just_build_it_html_prototyping_and_agile_development/

02_TCSS-4.indd 13902_TCSS-4.indd 139 10/27/06 3:02:52 PM10/27/06 3:02:52 PM

02_TCSS-4.indd 14002_TCSS-4.indd 140 10/27/06 3:02:52 PM10/27/06 3:02:52 PM

Practicing the Process
It’s time for you put into practice the workflow and techniques you have learned. In this

section, you will move through the stages of the content-based workflow with the goal of

creating an interactive prototype from one of three static design visuals using meaningful

markup and CSS.

Looking at the ingredients
Let’s imagine for a moment that you have the pleasure of working on a new design for a

start-up company. This company has shiny new offices and enough venture capital to run a

small country with change to spare. This new company, Cookr!, is building an exciting Web

application that will enable its visitors to upload and share recipes on the Web.

The first stage in the process is for you to gather all the content and organize it, taking

care to be sensitive to search engine, usability, and accessibility concerns.

Opening the grey boxes
Here the grey box method is ideal for describing the content that will appear on any given

page and the relationships inherent between areas of that content. Grey boxes are easy to

create, and they give visual designers just the right amount of information without limiting

any of the ideas they might have for how the page layout should look.

For this simple page, grey boxes are representing two primary areas (Figure 2.17):

 • Content of interest

 • Navigation and tools

Content and navigation have been further divided into the following:

 • Content includes an individual recipe’s main content, including its description,

 ingredients, and cooking instructions.

 • Navigation includes links to account features and tools that help visitors use the site.

To provide more detailed information, these grey boxes could be part of a larger set of

documentation that might include a page description document or other notes about con-

tent and functionality.

2.17 Representing the Cookr!
prototype with a grey box

Part 2: Process 141

02_TCSS-4.indd 14102_TCSS-4.indd 141 10/27/06 3:02:54 PM10/27/06 3:02:54 PM

Looking at the static design visuals
Creating static designs will likely always be part of the creative design process. For

this project, assume you have created three static designs. The client has initially cho-

sen one that best reflects their branding and the emotions they want the site to evoke

(Figure 2.18).

Writing content-out markup
Whatever role you play in the process, work can begin now on creating a meaningful XHTML

document. You will build this document from the content that was described and orga-

nized into grey boxes. You can work on this markup even while the intricacies of the visual

design are still being finalized. This gives everybody involved in the project a head start.

Although it might be tempting to use the visual layout as the basis for the structure of

your markup, this could lead to you overusing elements, particularly <div> elements. This

will also result in establishing your content order primarily to accomplish the visual layout

rather than it making sense when no style sheets are available. To avoid presentational

markup and ordering problems, begin by first looking at the content and then working out

from the meaning.

2.18 Giving three static designs for the Cookr! project

142 Transcending CSS

02_TCSS-4.indd 14202_TCSS-4.indd 142 10/27/06 3:02:54 PM10/27/06 3:02:54 PM

Visualizing the structure
If you refer to the grey boxes and static design visuals, you will see that the page you are

prototyping has several important areas of content:

 • A main recipe that contains information about how to make it, plus its ingredients

 • Similar and alternative recipes

The static design contains expected site features including branding, navigation, and site

information that are unrelated to the main content. I often refer to these features as

site furniture.

Main content
We already know that the name of the site, Cookr!, is important for identifying the site. It’s

so important, in fact, that it is appropriate to use the top-level heading <h1> to describe

it in markup.

Now turn your attention to the main recipe information, which includes its name followed

by a short description (Figure 2.19).

Note

Some developers prefer to use a top-
level heading, on the home page only,
for the name of the site. On other
pages, they use an <h1> element for
the page’s unique title and not for the
name of the site.

2.19 Getting a close-up look at the main recipe information

Part 2: Process 143

02_TCSS-4.indd 14302_TCSS-4.indd 143 10/27/06 3:02:57 PM10/27/06 3:02:57 PM

Looking at this content, two elements should spring to mind:

 • A heading for the recipe name, in this case a second-level heading, <h2>

 • A paragraph, <p>, for the recipe description

Here are the elements:

<h2>Raisin bread</h2>

<p>Tea breads, halfway between bread and a cake, are popular for tea, as they
keep well and can be made in advance. Soda bread is a good substitute for
yeast bread in an emergency and can be made shortly before it is required.</p>

You should see a similar pattern to the structure of the cooking instructions, but with one

subtle difference. If you refer to the grey boxes, you will see that these instructions and

ingredients are part of the main recipe content marked up with an <h2> element. To main-

tain a well-structured outline, you should choose lower-level headings for all the content

that falls under that heading (Figure 2.20).

<h3>Instructions</h3>

<p>I worked on 9 strands at a time, letting them relax before rolling and
stretching them a bit further. In all, it took us about an hour to finish. We
braided the strands and then coiled them around a stainless steel bowl that we
covered in tinfoil.</p>

<p>Bread Basket Chef baked them in a hot oven until the dough set, then
removed the metal bowls, and inverted the basket to dry out the inside. When
she removed them from the oven, the outside was browned but the inside was
still a bit soft, so we finished drying them at home. I’m not all that excited
about this product: while it’s edible and interesting to admire, I much prefer
something I can eat.</p>

Finally, the main recipe content contains a list of ingredients, in no particular order. Here

you should use an unordered list, rather than any other type, to provide the structure

(Figure 2.21).

<h3>Ingredients</h3>

2.20 Close-up of the instructions

2.21 Close-up of the ingredients

144 Transcending CSS

02_TCSS-4.indd 14402_TCSS-4.indd 144 10/27/06 3:02:57 PM10/27/06 3:02:57 PM

5^{ml} bicarbonate of soda
2.5^{ml} cream of tartar
275^g plain flour
100^g butter
2.5^{ml} ground ginger
5^{ml} ground mace
2.5^{ml} ground all spice

You might have noticed that at no stage have I been asking any questions about how this

content is going to look, concentrating instead on the content’s meaning and the elements

most appropriate to describe it.

Secondary content
Now turn your attention to the similar recipes area. They appear on the right of the static

design, but you should not be concerned about that at this stage because it does not mat-

ter where this content will be positioned visually.

The similar recipes links give visitors an opportunity to look at related recipes should the

main recipe not quite be what they need. Here you can see two alternative recipes listed,

although many more could be listed (Figure 2.22). The heading is simple enough to deal

with; in this case I have chosen to use a third-level heading, <h3>.

<h3>Similar recipes</h3> 2.22 Close-up of similar recipe links

02_TCSS-4.indd 14502_TCSS-4.indd 145 10/27/06 3:02:57 PM10/27/06 3:02:57 PM

What about the alternative recipes information that follows this heading?

Challah

For the challah, we mixed up a very tacky dough that clung to the bowl, the
hook, and the table. Mindful of Chef’s instructions to use as little flour as
possible.

Baguettes

We used both hands, one on top of the other, to press out most of the gas and
pulled the dough into a rectangle. Then, with the short end facing us, we
folded it in three.

You would be correct if you thought this content suggests that headings and paragraphs

would be appropriate, but you would also be overlooking that these recipes are part of a

series, and as such they form a list. But what type of list?

The titles and accompanying text are not strictly definition terms and descriptions, so

using a definition list would be stretching the semantic use of the <dl> element. Because

the list has no order, it is appropriate to use an unordered list with list items that contain

each heading and a paragraph. This forms a meaningful XHTML compound:

<h4>Challah</h4>
<p>For the challah, we mixed up a very tacky dough that clung to the bowl, the
hook, and the table. Mindful of Chef’s instructions to use as little flour as
possible.</p>

<h4>Baguettes</h4>
<p>We used both hands, one on top of the other, to press out most of the gas
and pulled the dough into a rectangle. Then, with the short end facing us, we
folded it in three.</p>

Tip

Both the HTML Validator extension
for Firefox and the Safari Tidy plug-
in for Safari will nag you by showing
warning icons in the status bar of
the browser when your pages contain
errors.

146 Transcending CSS

02_TCSS-4.indd 14602_TCSS-4.indd 146 10/27/06 3:02:59 PM10/27/06 3:02:59 PM

Note: XHTML compounds are combinations of two or more elements in XHTML that each
have their own meaning. When combined, the elements create a more precise mean-
ing together than they do separately. The concept of XHTML compounds emerged from
the microformats community rather than the W3C. You can learn more about XHTML
compounds in “The Elements of Meaningful XHTML” by Tantek Çelik at www.tantek.
com/presentations/2005/09/elements-of-xhtml/.

Finally, you can take an identical approach for the links to related recipes (Figure 2.23):

<h3>You might also like</h3>

<h4>You might also like</h4>
<p>The recipe in the link is half the original recipe that yields about 18
large muffins. I always cut down on the butter in this recipe.</p>

<h4>Pistachio and Dried Fruit Cake</h4>
<p>The author says her mother makes this cake during Lent, so it is a
coincidence that I made it for the Easter weekend.</p>

<h4>Brownie Berry Tower</h4>
<p>For the final class of this course, we made a tall cake, with brownie
layers sandwiching two kinds of cream and strawberries.</p>

With both the main and additional areas of content complete, it’s a good time to preview

your document in your development browser to see the structure of your content. It’s also

a great time to validate your markup to ensure that no errors have crept in along the way.

Adding your first divisions
By now it should be clear that these two content areas are separate but are also related.

You can group each into a division, and to add further meaning, you can give each one an

identity that relates to the meaning of the content it contains:

2.23 Close-up of related recipes

Part 2: Process 147

02_TCSS-4.indd 14702_TCSS-4.indd 147 10/27/06 3:02:59 PM10/27/06 3:02:59 PM

<div id=”content_main”>
Main content
</div>

<div id=”content_sub”>
Secondary content
</div>

Because the two areas are related, you can enclose them both inside a content division to

further cement their relationship:

<div id=”content”>
<div id=”content_main”>
Main content
</div>

<div id=”content_sub”>
Secondary content
</div>
</div>

Each of these three meaningfully labeled divisions will soon become an opportunity for you

to add your visual style.

Adding the site furniture
With your content areas complete, it is time to add the branding area, navigation, and site

information that form the site’s furniture. This furniture will appear on every page of your

site. Once again, start working from the content out, tackling each area in turn.

02_TCSS-4.indd 14802_TCSS-4.indd 148 10/27/06 3:02:59 PM10/27/06 3:02:59 PM

Branding
Your document contains two pieces of branding information: the site’s name that is graphi-

cally presented as a logo in the static design and a tag line that the visual design has

intended not to be visible. Think of this hidden tag line as a piece of embedded informa-

tion that will be useful to visitors using browsers that do not support style sheets and also

to search engines (Figure 2.24):

Cookr!
A great place to store and share your favorite recipes
Kimberly Blessing

You have already decided on an <h1> element for the site name, but what about the

tag line? In its basic form, this tag line is a quotation from a happy customer, and the

<blockquote> element is a perfect choice. You can also take this opportunity to cite the

source of the quotation by including the <cite> element:

<blockquote>
<p>A great place to store and share your favorite recipes</p>
<p><cite>Kimberly Blessing</cite></p>
</blockquote>

You can now relate both the site name and the tag line in a division to give them an extra

level of meaning and get the added advantage of a hook for styling those elements:

<div id=”branding”>
<h1>Cookr</h1>
<blockquote>
<p>A great place to store and share your favorite recipes</p>
<p><cite>Kimberly Blessing</cite></p>
</blockquote>
</div>

Adding navigation
It is now time for you to address the elements you will need for the navigation area.

Although this navigation might at first look complex with its different visual styles, by

working from the content out you will realize that it is no more complex than other areas

of your document (Figure 2.25).

2.24 Hiding the content

2.25 Close-up of the navigation

Part 2: Process 149

02_TCSS-4.indd 14902_TCSS-4.indd 149 10/27/06 3:03:00 PM10/27/06 3:03:00 PM

Looking at this navigation in the static design and grey boxes, you will see several distinct

types of links:

 • A personalized welcome message containing a link from the visitor’s name

 • Account, help, and sign-out links (tools)

 • Image links for the “sign up,” “dish up,” and “wash up” features

 • A link to the site’s RSS feed

I suggest you start by establishing the order of importance of these links.

 1. Welcome message (for a returning visitor)

 2. Features

 3. Tools

 4. RSS feed

You can now choose the appropriate markup for these lists, working in that order:

<p>Bonjour Monsiour Collison</p>

<ul id=”nav_features”>
sign up!
dish up!
wash up!

<ul id=”nav_tools”>
Your account
Help
Log out
Nutritious RSS

You can now extend the meaning of these navigation list items by giving each a unique

identity that reflects the function of the list that each contains:

<p>Bonjour Monsiour Collison</p>

<ul id=”nav_features”>
<li id=”nav_signup”>sign up!
<li id=”nav_dishup”>dish up!
<li id=”nav_washup”>wash up!

150 Transcending CSS

02_TCSS-4.indd 15002_TCSS-4.indd 150 10/27/06 3:03:01 PM10/27/06 3:03:01 PM

<ul id=”nav_tools”>
<li id=”nav_account”>Your account
<li id=”nav_help”>Help
<li id=”nav_logout”>Log out
<li id=”nav_rss”>Nutritious RSS

I also suggest you add headings to both of these lists:

<h2>Site features</h2>

<h2>Tools</h2>

These headings will not be visible in the browser but will help visitors who will not be able

see the visual design. You can think about these hidden headings as embedded helpers to

further clarify the lists that follow them.

Cement the relationship between headings and lists by grouping these elements inside

their own uniquely identified division:

<div id=”nav_main”>
<p>Bonjour Monsiour Collison</p>

<h2>Site features</h2>
<ul id=”nav_features”>
<li id=”nav_signup”>sign up!
<li id=”nav_dishup”>dish up!
<li id=”nav_washup”>wash up!

02_TCSS-4.indd 15102_TCSS-4.indd 151 10/27/06 3:03:01 PM10/27/06 3:03:01 PM

2.26 Showing detail of site-information footer including a link to the top of the page

<h2>Tools</h2>
<ul id=”nav_tools”>
<li id=”nav_account”>Your account
<li id=”nav_help”>Help
<li id=”nav_logout”>Log out
<li id=”nav_rss”>Nutritious RSS

</div>

Site information footer
Finally, you can turn to the footer that will contain the site information. Typically this

might include a copyright statement, legal information, and perhaps a link to the start of

the page (Figure 2.26).

Although the visual designer has chosen not to show these elements, you will see by look-

ing at the grey boxes that the content should be present in the document. Deciding on the

elements for this content should be straightforward to you by now: a heading containing

an anchor to the top of the page and two paragraphs all grouped together within a site-

information division:

<div id=”site_info”>

<h5>Cookr!</h5>
<p>Beta until the cabbage has boiled</p>
<p>Copyright Cookr! All Rights Reserved</p>

</div>

Once again, this is a good opportunity to preview your document in your development

browser and to validate your markup to ensure it doesn’t contain any errors.

152 Transcending CSS

02_TCSS-4.indd 15202_TCSS-4.indd 152 10/27/06 3:03:02 PM10/27/06 3:03:02 PM

Arranging content into a meaningful order
It is time for you to put all these elements together in logical order. Before you dive back

into your markup, I suggest you start by listing the content in the most logical order

(Figure 2.27):

 1. Branding (site name and tag line)

 2. Navigation

 3. Main content

 4. Supplementary content

 5. Site information

2.27 Ordering the content in a logical manner

Part 2: Process 153

02_TCSS-4.indd 15302_TCSS-4.indd 153 10/27/06 3:03:02 PM10/27/06 3:03:02 PM

This list will become your document’s content order. For easy scanning through the order, I

have added numbered comments that relate to this order.

I have now also added the <html>, <head>, and <body> elements and my chosen DOCTYPE

to form a complete XHTML document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

<head>
<title>Cookr! | Raisin bread</title>
<meta http-equiv=”content-type” content=”text/html; charset=utf-8” /> </head>

<body id=”cookr-co-uk” class=”recipe”>

<!-- 1. Branding -->
<div id=”branding”>
<h1>Cookr!</h1>
<blockquote>
<p>A great place to store and share your favorite recipes</p>
<p><cite>Kimberly Blessing</cite></p>
</blockquote>
</div>

<!-- 2. Navigation -->
<div id=”nav_main”>

<p>Bonjour Monsiour Collison</p>

<h2>Site features</h2>
<ul id=”nav_features”>
<li id=”nav_signup”>sign up!
<li id=”nav_dishup”>dish up!
<li id=”nav_washup”>wash up!

<h2>Tools</h2>
<ul id=”nav_tools”>
<li id=”nav_account”>Your account

154 Transcending CSS

02_TCSS-4.indd 15402_TCSS-4.indd 154 10/27/06 3:03:03 PM10/27/06 3:03:03 PM

<li id=”nav_help”>Help
<li id=”nav_logout”>Log out
<li id=”nav_rss”>Nutritious RSS

</div>

<div id=”content “>
<!-- 3. Main content -->
<div id=”content_main”>

<h2>Raisin bread</h2>
<p>Tea breads, halfway between bread and a cake are popular for tea, as they
keep well and can be made in advance. Soda bread is a good substitute for
yeast bread in an emergency and can be made shortly before it is required.</p>

<h3>Instructions</h3>
<p>I worked on 9 strands at a time, letting them relax before rolling and
stretching them a bit further. In all, it took us about an hour to finish. We
braided the strands and then coiled them around a stainless steel bowl that we
covered in tinfoil.</p>

<p>Bread Basket Chef baked them in a hot oven until the dough set, then
removed the metal bowls, and inverted the basket to dry out the inside. When
she removed them from the oven, the outside was browned but the inside was
still a bit soft, so we finished drying them at home. I’m not all that excited
about this product: while it’s edible and interesting to admire, I much prefer
something I can eat.</p>

<h3>Ingredients</h3>

5<abbr title=”Mililitres”>ml</abbr> bicarbonate of soda
2.5<abbr>ml</abbr> cream of tartar
275<abbr title=”Grammes”>g</abbr> plain flour
100<abbr>g</abbr> butter
2.5<abbr>ml</abbr> ground ginger
5<abbr>ml</abbr> ground mace
2.5<abbr>ml</abbr> ground all spice

</div>

Part 2: Process 155

02_TCSS-4.indd 15502_TCSS-4.indd 155 10/27/06 3:03:03 PM10/27/06 3:03:03 PM

<!-- 4. Supplementary content -->
<div id=”content_sub”>

<h3>Similar recipes</h3>

<h4>Challah</h4>
<p>For the challah, we mixed up a very tacky dough that clung to the bowl, the
hook, and the table. Mindful of Chef’s instructions to use as little flour as
possible.</p>

<h4>Baguettes</h4>
<p>We used both hands, one on top of the other, to press out most of the gas
and pulled the dough into a rectangle. Then, with the short end facing us, we
folded it in three.</p>

<h3>You might also like</h3>

<h4>You might also like</h4>
<p>The recipe in the link is half the original recipe that yields about 18
large muffins. I always cut down on the butter in this recipe.</p>

02_TCSS-4.indd 15602_TCSS-4.indd 156 10/27/06 3:03:04 PM10/27/06 3:03:04 PM

<h4>Pistachio and Dried Fruit Cake</h4>
<p>The author says her mother makes this cake during Lent, so it is a
coincidence that I made it for the Easter weekend.</p>

<h4>Brownie Berry Tower</h4>
<p>For the final class of this course, we made a tall cake, with brownie
layers sandwiching two kinds of cream and strawberries.</p>

</div>
</div>

<!-- 5. Site information -->
<div id=”site_info”>
<h5>Cookr!</h5>
<p>Beta until the cabbage has boiled</p>
<p>Copyright Cookr! All Rights Reserved</p>
</div>

</body>
</html>

With all your markup elements in place, it is a great idea to once again preview your docu-

ment in your browser and take the opportunity to validate your markup before you move on

to implementing the design with CSS.

02_TCSS-4.indd 15702_TCSS-4.indd 157 10/27/06 3:03:04 PM10/27/06 3:03:04 PM

Implementing the static design with CSS
With your markup written and validated, it is time to develop the CSS to implement the

static design.

For flexibility, I suggest you divide your CSS across three separate style sheets, in the way

I demonstrated earlier:

 • Layout styles including display properties, floats and positioning, widths and heights,

and margins and padding. Name this style sheet layout.css.

 • Color styles including background properties, colors, and images, as well as text colors.

Name this style sheet color.css.

 • Typographical information including font families and sizes, line heights, letter spacing,

and text decorations. Name this style sheet typography.css.

To reduce the number of style sheets that are linked from your XHTML document, it is com-

mon practice to link to only one style sheet, as follows:

<link rel=”stylesheet” type=”text/css” href=”layout.css” />

Then import the remaining style sheets into that by using the @import at-rule:

@import url(color.css);
@import url(typography.css);

Building your layout
The first style sheet you will work with will contain all aspects of the visual layout that has

been defined in the static design; in this instance, it’s a two-column layout with branding

at the top, navigation, and a site-information area at the bottom.

I suggest you start by overriding all the browser styles, which will appear if you do not

provide a style. Furthermore, different browsers have different style defaults. By overriding,

or normalizing, the way elements are styled by the browser, you’ll gain far more control—

both within the CSS and across the browsers that will interpret it:

/* Normalizes margin, padding */
body, div, dl, dt, dd, ul, ol, li, h1, h2, h3, h4, h5, h6, pre, form, fieldset,
input, p, blockquote, th, td
{ margin : 0; padding : 0; }

158 Transcending CSS

02_TCSS-4.indd 15802_TCSS-4.indd 158 10/27/06 3:03:06 PM10/27/06 3:03:06 PM

/* Normalizes font-size for headers */
h1,h2,h3,h4,h5,h6
{ font-size : 100%; }

/* Removes list-style from lists */
ol,ul
{ list-style : none; }

/* Normalizes font-style and font-weight to normal */
address, caption, cite, code, dfn, em, strong, th, var
{ font-style : normal; font-weight : normal; }

/* Removes list-style from lists */
table
{ border-collapse : collapse; border-spacing : 0; }

/* Removes border from fieldset and img */
fieldset,img
{ border : 0; }

/* Left-aligns text in caption and th */
caption,th
{ text-align : left; }

/* Removes quotation marks from q */
q:before, q:after
{ content :’’; }

Working from the body
The static design in this example is a common, centered, fixed-pixel-width layout. In this

type of design, you can use an outer container or wrapper division to constrain the design

to the center of the browser window. You can eliminate the need for this division by using

the <html> and <body> elements to fix and center your design:

html {
text-align : center; }

Note

Read more about normalizing
browser styles at http://tantek.com/
log/2004/09.html#d06t2354
and at http://meyerweb.com/
eric/thoughts/2004/09/15/
emreallyem-undoing-htmlcss/.

Part 2: Process 159

02_TCSS-4.indd 15902_TCSS-4.indd 159 10/27/06 3:03:06 PM10/27/06 3:03:06 PM

body {
width : 770px;
margin : 0 auto;
text-align : left; }

Here, a fixed width and autoright and autoleft margins placed in the <body> element will

center the design within <html>.

Creating a positioning context
The expected behavior of any absolutely positioned element is to be positioned according

to any offsets in relation to the following:

 • Its closest positioned ancestor

 • In the absence of a positioned ancestor, the root element <html>

Because your design will use <body>, rather than a container <div>, to center the design,

you can apply relative positioning to the <body> element to establish it as a positioning

context for other positioned elements within the design:

body {
position : relative;
width : 770px;
margin : 0 auto;
text-align : left; }

To implement the static design using positioning (as I recommended earlier in the discus-

sion about CSS in the workflow), you will create two equal columns.

02_TCSS-4.indd 16002_TCSS-4.indd 160 10/27/06 3:03:06 PM10/27/06 3:03:06 PM

In your markup, both of the columns, content_main and content_sub, are situated

inside an outer division, content. To create a positioning context for these two columns,

you will add position : relative; to the division labeled content:

div#content {
position : relative;
width : 100%; }

Creating your two columns
Now you are ready to make two equal columns and use absolute positioning to place the

columns to the left and right. To accomplish the static design, you will give each column

an equal width, with the main content positioned to the left edge of its container and the

additional content positioned 50 percent from the container’s left edge:

div#content_main {
left : 0;
width : 50%;
padding : 1em 0; }

div#content_sub {
left : 50%;
width : 50%;
padding : 1em 0; }

Using this method will create two robust columns that can support supersized images or

even gigantic text without breaking the integrity of your design.

Switching the columns
What will you do if your client asks at this point, “Do you think the main content would

look better on the right, rather than on the left?”

CSS positioning allows you to switch the position of the two columns without changing

the source order of your document, even if one of your colleagues is still developing the

markup (Figure 2.28):

div#content_main {
position : absolute;
left : 50%;
width : 50%; }

Part 2: Process 161

02_TCSS-4.indd 16102_TCSS-4.indd 161 10/27/06 3:03:08 PM10/27/06 3:03:08 PM

div#content_sub {
position : absolute;
left : 0;
width : 50%; }

It is equally as simple to change the proportions of your layout by adjusting both the

widths of the two columns and their horizontal positions. For example, to alter the layout

to 70/30 percent proportions, you can alter the column rules to the following:

div#content_main {
position : absolute;
left : 70%;
width : 30%; }

div#content_sub {
position : absolute;
left : 0;
width : 70%; }

2.28 Switching the position of the two columns

162 Transcending CSS

02_TCSS-4.indd 16202_TCSS-4.indd 162 10/27/06 3:03:08 PM10/27/06 3:03:08 PM

2.29 Box in normal flow

2.30 Relatively positioned box
leaving a space behind

Arranging the furniture
With much of the more complex layout positioning now complete, you should add a com-

bined rule that will give all of your remaining layout divisions a width:

div#branding, div#nav_main, div#site_info {
width : 100%; }

Ah, but a gotcha is hiding here. If you preview your layout in a browser, you will notice

immediately that the site-information section, which you intended to be at the foot of the

page, has risen up and overlaps the content of your columns. This is not a bug, either in

your CSS or in your browser; it is the result of using absolute positioning to create your

columns, which means you can easily fix this using the Inman position clearing method.

RELATIVELY SPEAKING
Relative positioning often confuses people who are new to CSS positioning, largely because

the term relative makes people wonder “relative to what?”

Relatively positioned elements are positioned relative to the normal flow. Normal flow is

the natural, expected flow of the content within the browser window. Imagine looking at

a plain document, marked up with content, headers, and paragraphs only. Then resize the

browser window using the lower-right corner. Watch the text while making your browser

window smaller and you’ll notice the text flows down and to the left. Any element in the

normal flow flows with the document logic (Figure 2.29).

A relatively positioned box is offset in relation to its natural position within the normal

flow. When an element is relatively positioned from its original location in the normal flow,

it leaves behind it the space it would normally have occupied. Other elements cannot flow

into this “ghosted” space because the element is still considered by the browser to actually

be in the normal flow, not out of it (Figure 2.30).

Part 2: Process 163

02_TCSS-4.indd 16302_TCSS-4.indd 163 10/27/06 3:03:09 PM10/27/06 3:03:09 PM

02_TCSS-4.indd 16402_TCSS-4.indd 164 10/27/06 3:03:09 PM10/27/06 3:03:09 PM

Using Inman position clearing to fix your footer
During the prototyping phase, you can use a combination of JavaScript
and CSS to force this site information to drop below the absolutely
positioned columns. Inman position clearing uses JavaScript to posi-
tion the site-information <div> element underneath the absolutely
positioned columns once the browser has calculated their heights.

For this solution to work, you must place a link to the script immedi-
ately prior to the closing </body> tag in your XHTML:

<script type=”text/javascript” src=”si-clear-children.
js”></script>
</body>

To enable this script to work its magic, you need to add several extra
class attributes to your content divisions in your XHTML:

<div id=”content” class=”c clear_children”>
<div id=”content_main” class=”pc cc_tallest”>
Main content
</div>

<div id=”content_sub” class=”sc”>
Additional content
</div>
</div>

/* =si_clear_children */
.pc,.sc { position : absolute; top: 0; left: 0; }
.clear_children,.cc_tallest { position: relative; }
/**/* html .clear_children { display: inline;}/**/
.cc_tallest:after { content: ‘’; } /* PREVENTS A REDRAW
BUG IN SAFARI */

Your site-information footer will now take its rightful place underneath
the two columns.

Note: You can find out more about Inman position clearing at
www.shauninman.com/plete/2006/05/
clearance-position-inline-absolute.

Understanding absolute positioning
An absolutely positioned element is positioned first to its closest
positioned ancestor. If there is no positioned ancestor, the element
is positioned to the root element <html> (Figure 2.31).

2.31 An element absolutely positioned to root 2.32 Normal flow intact, with other elements flowing up to
fill the space

Absolutely positioned elements are considered to be out of the normal
flow of the document. Therefore, text and other elements can flow
up into any space the element was taking up prior to being offset
(Figure 2.32).

Part 2: Process 165

02_TCSS-4.indd 16502_TCSS-4.indd 165 10/27/06 3:03:13 PM10/27/06 3:03:13 PM

Moving on, or handing over?
In a team environment, this is another opportunity for you to hand over your work to

another team member or a different department, for example, to add functionality or

perhaps CMS (Content Management System) integration. This basic layout (Figure 2.33)

provides your technical developers with a robust platform on which to develop while you

continue working to accomplish the full static design.

2.33 Viewing the prototype with only layout styles applied

Basic color styles
Now it’s time for you to add the background colors and images for your page backgrounds

and content areas:

html {
background-color : #f1efe2; }

166 Transcending CSS

02_TCSS-4.indd 16602_TCSS-4.indd 166 10/27/06 3:03:14 PM10/27/06 3:03:14 PM

div#content {
background-color : #fff; }

div#site_info {
background : transparent url(site_info.png) no-repeat 0 0; }

Building brand
If you refer to the static design, you’ll see the branding area features a rounded-corner,

green background image, and a logo and image that break out of the top and left of the

design. Here’s the markup that was chosen for this area:

<div id=”branding”>
<h1>Cookr!</h1>
<blockquote>
<p>A great place to store and share your favorite recipes</p>
<p><cite>Kimberly Blessing</cite></p>
</blockquote>
</div>

You’ll add some room above the branding area to make space for positioning your logo and

image by adding top padding to your <body> element:

body {
padding-top : 50px; }

Style the branding by giving it a height that matches its background image:

div#branding {
height : 120px;
background : transparent url(branding.png) no-repeat 0 0; }

Adding the logo
To create the effect of the logo and image breaking out of the branding area, you will use

negative offset values on the absolutely positioned <h1> element. This will move them

outside the <body> element:

Part 2: Process 167

02_TCSS-4.indd 16702_TCSS-4.indd 167 10/27/06 3:03:14 PM10/27/06 3:03:14 PM

h1 {
position : absolute;
top : -10px;
left : -80px;
}

To accomplish the static design, you will need the branding images to overlap the naviga-

tion below it. To ensure that these images always remain in the foreground and above any

other positioned elements, give your heading a high z-index:

div#branding {
position : relative;
z-index : 10; }

Note: You can read all about z-index and image replacement in my article “Z’s not dead
baby, Z’s not dead” at http://24ways.org/advent/zs-not-dead-baby-zs-not-dead/.

For this design, you will need to replace the <h1> element with an alpha-transparent PNG

image. So many image replacement techniques now exist that it can be hard to keep up-to-

date. I suggest you use the simple and reliable Phark method:

h1 {
position : absolute;
top : -60px;
left : -80px;
width : 588px;
height : 253px;
background : transparent url(h1.png) no-repeat;
text-indent : -9999px; }

This method hides the header text by using negative text indentation to the point where

it disappears off the left edge of the browser viewport. You can use a similar technique for

moving the tag line out of view. This text will still be available to visitors who cannot see

the visual design:

div#branding blockquote {
position : absolute;
top : -9999px;
}

The branding area is now complete with the header styled, the site logo in place, and the

tag line moved out of view (Figure 2.34).

2.34 Completed branding

168 Transcending CSS

02_TCSS-4.indd 16802_TCSS-4.indd 168 10/27/06 3:03:15 PM10/27/06 3:03:15 PM

Styling the navigation
With your branding complete, it is time to turn your attention to the slightly more complex

navigation area. If you refer to the markup you created for the navigation division, you will

see you included a paragraph and two unordered lists. You gave each of the lists, and the

items they contain, unique identities:

<div id=”nav_main”>

<p>Bonjour Monsiour Collison</p>
<h2>Site features</h2>
<ul id=”nav_features”>
<li id=”nav_signup”>sign up!
<li id=”nav_dishup”>dish up!
<li id=”nav_washup”>wash up!

<h2>Tools</h2>
<ul id=”nav_tools”>
<li id=”nav_account”>Your account
<li id=”nav_help”>Help
<li id=”nav_logout”>Log out
<li id=”nav_rss”>Nutritious RSS

</div>

You can now put each of those attributes to good use by selecting these elements using

their id attributes.

But before you turn your attention to the elements, you’ll start by preparing their parent,

the division you labeled nav_main. Add a background image and a height that matches

that image:

div#nav_main {
position: relative;
height : 50px;
background : #edc025 url(nav_main.png) no-repeat 0 0; }

Because so many of its children will be positioned, you should establish the parent as the

positioning context and set a low z-index because you’ll want some of these positioned

elements to sit behind others on the page:

Part 2: Process 169

02_TCSS-4.indd 16902_TCSS-4.indd 169 10/27/06 3:03:15 PM10/27/06 3:03:15 PM

div#nav_main {
z-index : 1;
height : 90px;
background : #edc025 url(nav_main.png) no-repeat 0 0; }

Features navigation
You will start by using absolute positioning to place the features navigation list on the

right of the navigation area:

ul#nav_features {
position : absolute;
top : 35px;
left : 325px;
margin : 0;
width : 440px;
height : 50px; }

Ready to add the images that form the features navigation buttons? Opt for a simple solu-

tion that places all three buttons as a background image to the features list. Then, lay

each of the anchors over the background image by using absolute positioning and giving

each anchor an explicit height and width:

ul#nav_features {
position : absolute;
top : 35px;
left : 325px;
margin : 0;
width : 440px;
height : 50px;
background : transparent url(nav_features.png) no-repeat; }

ul#nav_features li {
display : inline; }

li#nav_signup {
left : 0; }

li#nav_dishup {
left : 150px; }

170 Transcending CSS

02_TCSS-4.indd 17002_TCSS-4.indd 170 10/27/06 3:03:15 PM10/27/06 3:03:15 PM

li#nav_washup {
left : 300px; }

li#nav_signup a, li#nav_dishup a, li#nav_washup a {
display : block;
height : 50px;
width : 140px;
text-indent : -9999px; }

Tools navigation
You will form the tools navigation list from simple text links. Once again you will use

absolute positioning to place this list where the design demands:

ul#nav_tools {
position : absolute;
top : 3px;
left : 280px;
margin : 0;
width : 460px; }

You should style each list item to display inline rather than as a block that will occupy

a space on a line below:

ul#nav_tools li {
display : inline; }

To create an even space between each of the anchors, add a margin and padding to each

of the anchors, and then reset these styles on specific links by selecting them with their

list item’s id name:

ul#nav_tools li a {
margin-right : 10px;
padding-right : 10px; }

li#nav_logout a. li#nav_rss a {
margin-right : 0;
padding-right : 0; }

Part 2: Process 171

02_TCSS-4.indd 17102_TCSS-4.indd 171 10/27/06 3:03:16 PM10/27/06 3:03:16 PM

You can position the link to the site’s RSS feed using both positioning and image

replacement:

li#nav_rss {
position : absolute;
right : 0;
width : 120px;
height : 25px; }

li#nav_rss a {
display : block;
width : 120px;
height : 25px;
text-indent : -9999px; }

Getting up close and personal
Style and position the paragraph containing the site’s personalized welcome message

to returning visitors:

div#nav_main p {
position : absolute;
top : 45px;
left : 35px;
margin : 0; }

Hide the embedded alternate headers by moving them off the top of the screen:

div#nav_main h2 {
position : absolute;
top : -9999px; }

You’ve styled each of the different navigation elements using a combination of text

and images (Figure 2.35).

2.35 Completed navigation

172 Transcending CSS

02_TCSS-4.indd 17202_TCSS-4.indd 172 10/27/06 3:03:16 PM10/27/06 3:03:16 PM

Styling the footer
All that remains is to complete the styling of the site information. This area contains a

level-five heading, <h5>, and two paragraphs:

<div id=”site_info”>
<h5>Cookr!</h5>
<p>Beta until the cabbage has boiled</p>
<p>Copyright Cookr! All Rights Reserved</p>
</div>

Once again you will use absolute positioning to style the heading and “hide” one of the

paragraphs from view. Your first tasks are to establish the division as a positioning context

for its absolutely positioned child elements and give it a height that matches its back-

ground image:

div#site_info {
position : relative;
width : 100%;
height : 120px;
background : transparent url(site_info.png) no-repeat 0 0; }

Using image replacement
Replacing the text of this heading should be a familiar process to you by now. Once again I

suggest using the Phark method for its simplicity:

div#site_info h5 {
position : absolute;
right : 10px;
bottom : 10px;
width : 150px;
height : 70px;
background : transparent url(h5.png) no-repeat; }

div#site_info h5 a {
display : block;
width : 150px;
height : 70px;
text-indent : -9999px; }

Part 2: Process 173

02_TCSS-4.indd 17302_TCSS-4.indd 173 10/27/06 3:03:16 PM10/27/06 3:03:16 PM

The semantic framing of the pages in

(X)HTML makes it all the way to production

in 95% of the projects. The time savings with

XHTML wireframes has been about a quarter

to a third of the development time saved.
THOMAS VANDER WAL

www.vanderwal.net/random/category.php?cat=84

02_TCSS-4.indd 17402_TCSS-4.indd 174 10/27/06 3:03:16 PM10/27/06 3:03:16 PM

Positioning the paragraphs
Your final task in styling the footer is to position the paragraph containing the copyright

notice. Although your document has two paragraphs of text, the static design dictates that

only the second of the two is visible.

Here you can use the power of adjacent sibling selectors to target the second paragraph

without affecting the first, all without adding further class or id attributes to achieve

this presentational result.

Apply styles to both of the paragraphs in the site-information area, once again using abso-

lute positioning to place both paragraphs in the same place:

div#site_info p {
position : absolute;
left : 10px;
top : 10px;
margin : 0; }

div#site_info h5 + p {
text-indent : -9999px; }

If you preview the result in your browser, you will see that both paragraphs now occupy

the same space, hardly an attractive result. Your next move will be to hide only the first

paragraph, moving it off the left of the browser viewport, by using an adjacent sibling

selector and a large amount of negative text indent (Figure 2.36).

2.36 Completed footer styles

Part 2: Process 175

02_TCSS-4.indd 17502_TCSS-4.indd 175 10/27/06 3:03:16 PM10/27/06 3:03:16 PM

Understanding elements of typographical style
With your main design styling complete, it’s time to turn your attention to typography.

I suggest you write all your typographical styles in a separate typography.css style sheet:

body {
font : 72%/1.5 “Trebuchet MS”, “Lucida Grande”,”Lucida Sans Unicode”, Verdana,
sans-serif; }

h2, h3, h4, p, ul, blockquote {
margin : 0 20px .75em; }

h2, h3 {
margin-bottom : .15em;
font : 200% “Trebuchet MS”, “Lucida Grande”,”Lucida Sans Unicode”, Verdana,
sans-serif;
font-weight : bold;
letter-spacing : -1px; }

li > h4 { margin-left : 0; }

p {
font-size : 100%; }

h2+p {
font-size : 110%; }

li > p { margin-left : 0; }

a:link, a:visited {
text-decoration : none; }

You can follow these with your text colors that you have derived from your static design:

body {
color : #333; }

h2, h3 {
color : #88a308; }

div#nav_main p {
font-size : 160%;
color : #88a308; }

176 Transcending CSS

02_TCSS-4.indd 17602_TCSS-4.indd 176 10/27/06 3:03:17 PM10/27/06 3:03:17 PM

div#site_info p {
color : #fff; }

a:link, a:visited {
color : #f90; }

ul#nav_tools a {
color : #fff; }

Add the typographic styles, and you’ve completed the interactive prototype (Figure 2.37).

2.37 The completed interactive prototype for Cookr!

Part 2: Process 177

02_TCSS-4.indd 17702_TCSS-4.indd 177 10/27/06 3:03:17 PM10/27/06 3:03:17 PM

02_TCSS-4.indd 17802_TCSS-4.indd 178 10/27/06 3:03:17 PM10/27/06 3:03:17 PM

Putting It All Together
You now have a working interactive prototype, a far cry from the traditional result of a

static image. This prototype, built with meaningful markup and CSS, enables interaction

designers and developers to take development further by adding enhanced functionality

using Ajax or related technologies.

I hope you have seen that this method not only makes the most of lightweight, meaningful

markup and CSS, which are two of the major advantages when working with Web standards,

but that this method is about far more than the mechanics of markup and style sheets.

If you are a lone designer who creates static designs, markup, and CSS, this method is an

ideal design framework to give you more flexibility. Proofing your ideas using markup and

CSS, in addition to working in Photoshop, enables you to see the realities of your designs

far earlier in the process. It allows you to try new ideas and to rapidly see what works and

what doesn’t. You can find out earlier how your designs will work when adapted for the

Web and see how your layouts will behave when implemented as a flexible, rather than as

a frozen, layout.

If you work as part of a larger team where designers work separately from technical

developers, these prototypes have many advantages for both designers and developers. For

designers, they give all the creative advantages and also provide an ideal way to collabo-

rate with technical developers. They show the real meaning of the content and demonstrate

the meaningful markup that should be used and maintained throughout the entire process.

For technical developers, these standards-based prototypes offer the firm foundation for

development that no other method of static design, wireframe, or prototype can offer: valid,

meaningful markup on which to continue developing with microformats, DOM scripting, and

any other type of technical programming and development. These prototypes are the ideal

starting point for developing feature-rich content by using Ajax or similar combinations of

technologies, all without breaking the carefully crafted work of a visual designer.

In large organizations where many people with many different skills work together to make

the final product, quality of workmanship and time spent in design and development are

both critical factors. By working in parallel, iterative tracks from the same sound foun-

dation of meaningful XHTML, visual designers and technical developers of all kinds can

work on a project in sync, with fewer margins for error and less time spent undoing other

people’s hard work.

Part 2: Process 179

02_TCSS-4.indd 17902_TCSS-4.indd 179 10/27/06 3:03:21 PM10/27/06 3:03:21 PM

