
04_TCSS-3_x.indd 27004_TCSS-3_x.indd 270 10/27/06 5:57:04 PM10/27/06 5:57:04 PM

4 Transcendence

Work with CSS positioning and floats

Explore the developments in CSS3

Create with the Absolute Layout Module

271

04_TCSS-3_x.indd 27104_TCSS-3_x.indd 271 10/27/06 5:57:12 PM10/27/06 5:57:12 PM

04_TCSS-3_x.indd 27204_TCSS-3_x.indd 272 10/27/06 6:18:01 PM10/27/06 6:18:01 PM

Transcendent CSS
So, you’re nearing the end of this book, but the fat lady isn’t singing just yet. In this final

part, you’ll bring together all the principles and approaches you have learned this far. You’ll

focus on using meaningful markup and Transcendent CSS to create a series of new designs

for layouts and interface elements. These have all been inspired by different sources from

the pages of my own scrapbook.

Note: Rather than taking a more conventional book approach, each of the examples focuses
not on a single technique but on how to combine techniques to create inspiring results.

Not all the techniques that I’ll cover, or all the examples you will develop, will work or

look the same across all browsers; some will, and some won’t. Don’t worry; this is inten-

tional because this book is concerned with what is possible within today’s standards-aware

 browsers. So, I will not attempt to cover hacks, patches, or workarounds to create pixel-

perfect rendering across all browsers or attempt to deal with older browsers.

If you are working in an agency or consultancy environment, saying “To hell with bad

browsers” may be a more realistic option than if you are working within a larger organiza-

tion or perhaps even a government department where it may be more difficult to convince

your managers of the need to move forward.

Fortunately, certain solutions make it possible for you to fully adopt CSS2.1 and have it

work in what is today the most used browser on the Web.

Part 4: Transcendence 273

04_TCSS-3_x.indd 27304_TCSS-3_x.indd 273 10/27/06 5:57:13 PM10/27/06 5:57:13 PM

Absolute positioning
CSS positioning has fallen a little out of favor in recent years. Where once it provided

the backbone to many early CSS layouts, designers have largely given up positioning for

layouts and instead have concentrated on floated layouts. This is unfortunate because

positioning is one of the most powerful design tools you will find in CSS.

CSS has four positioning values:

 • Relative: Better described as offsetting, relative positioning moves an element from

where it would usually appear in the normal flow. For example, an offset of top : 1em;

will move an element up a distance of 1 em but will leave a ghosted space behind where

the element would have been before offsetting.

 • Absolute: Absolute positioning positions an element according to its closest positioned

containing block within the document tree. In the absence of a positioned contain-

ing block, an absolutely positioned element will take its position from the root ele-

ment, <html>. Throughout this book, I will refer to a positioned containing block as an

element’s positioning context.

 • Fixed: An element that is positioned with a value of fixed is always positioned in

respect to the viewport of the browser window and stays in position, even when the visi-

tor scrolls the document. Fixed positioning is considered a type of absolute positioning.

 • Static: This is an element’s default position in the normal flow of the document. The

static value is useful really only for overriding any previous positioning rules.

Note: For a more detailed look at the differences in positioning schemes, Tommy Olsson has
written a fantastic introduction on his now sadly defunct Web site at www.autisticcuckoo.
net/archive.php?id=2004/12/07/relatively-absolute.

On the opposite page (Figure 4.1) is the visual design you are aiming to achieve for this

first example, plus the elements you will use to convey the meaning of your content. You

will create the design using only this minimal, but highly meaningful, markup. This design

could have several uses, from a small interface panel to a whole new way of arranging

products on an e-commerce Web site.

274 Transcending CSS

04_TCSS-3_x.indd 27404_TCSS-3_x.indd 274 10/27/06 5:57:13 PM10/27/06 5:57:13 PM

4.1 The inspiration for the design (top), the final layout (bottom), and the markup (right)

Part 4: Transcendence 275

04_TCSS-3_x.indd 27504_TCSS-3_x.indd 275 10/27/06 5:57:13 PM10/27/06 5:57:13 PM

Before you start working with CSS, you’ll see how just the “naked” document appears in a

browser, which will help you understand the order of the content and how it might appear

to a visitor for whom the style sheet might not be available (Figure 4.2).

The markup you need to accomplish this design is about as simple as it gets: just one

unordered list. Each of the named list items contains a heading, an anchor wrapped around

link text, an image, and a paragraph of descriptive text:

<li id=”pomegranate”>
<h3>
Pomegranate</h3>
<p>Descriptive text</p>

Setting the stage
You’ll set the stage for this design by giving the <body> element a fixed-pixel width, cen-

tered in the browser window. At this point, it is also a good idea to set basic and

<color> values:

body {
width : 500px;
margin : 0 auto;
background-color : #fff;
font : 72%/1.6 “Lucida Grande”, Verdana, sans-serif;
color : #333; }

This design relies on positioning that takes the images out of their usual position in the

normal flow of the document and places them at the top of the window. But before you can

position the images, you need to establish the positioning context for these positioned

images by adding position : relative; (with no offsets) to the unordered list.

Remember the explanation of the four types of positioning? An absolutely positioned ele-

ment takes its position from its most recent positioned containing block. This containing

block can have any of the positioning methods but static applied to it, including position

: relative;. In this example, the positioning context has no offsets applied to it and

will stay in its calculated position in the normal flow of the document. It will, however,

become the positioning context for any of its positioned children.

List items, list anything

It might at first seem strange to see
headings and paragraphs enclosed
within a list item. Unordered lists
and their ordered counterparts are
two of the most useful and flexible
elements available in XHTML and you
can use them to present a wide variety
of content when a series of content
elements forms a list, such as a list
of product names and descriptions,
a list of addresses, or even a list of
specification tables.

Note

What? No alternative text in the alt
attribute? No. In this context where
the images immediately precede their
descriptive text, I have chosen to set
an empty alt “string” on each image,
which is perfectly valid and acces-
sible. You don’t need to force users of
a screen reader to hear the same word
twice.

276 Transcending CSS

04_TCSS-3_x.indd 27604_TCSS-3_x.indd 276 10/27/06 5:57:15 PM10/27/06 5:57:15 PM

4.2 Viewing the “naked” document

Part 4: Transcendence 277

04_TCSS-3_x.indd 27704_TCSS-3_x.indd 277 10/27/06 5:57:15 PM10/27/06 5:57:15 PM

Also, clear 510 pixels of space for the images by applying top padding to the list that is

equal to the height of three rows of images (Figure 4.3). Because nothing is as boring as

looking at an empty space, I have added a dotted, red border around the space where the

images will appear.

ul {
position : relative;
padding-top : 510px; }

Positioning the images
The real magic in this design (Figure 4.4) occurs when you move the images from their

position in the normal flow and position them in the space you have created:

h3 img {
position : absolute; }

#pomegranate h3 img { top : 0; left : 0; }
#carrot h3 img { top : 0; left : 170px; }
#onion h3 img { top : 0; left : 340px; }
#gourd h3 img { top : 170px; left : 0; }
#strawberry h3 img { top : 170px; left : 170px; }
#lily h3 img { top : 170px; left : 340px; }
#fig h3 img { top : 340px; left : 0; }
#wine h3 img { top : 340px; left : 170px; }
#bean h3 img { top : 340px; left : 340px; }

While I’m on the subject of images, you can also add some subtle styling to the images by

giving them padding and a 1-pixel outline:

h3 img {
position : absolute;
padding : 1px;
outline : 1px solid #ccc; }

Playing with your food
If the Web were a food, then I’d like it not to be as dull as instant mashed potatoes,

so your next job will be to add a little gravy in the form of behaviors, enabled not by

 JavaScript but by CSS.
4.4 Absolutely positioning images

into the created space

4.3 Adding top padding for
creating space in which to
position images

278 Transcending CSS

04_TCSS-3_x.indd 27804_TCSS-3_x.indd 278 10/27/06 5:57:16 PM10/27/06 5:57:16 PM

4.5 Adding interactivity to
the page

You can begin tidying up the typography by adding padding and a subtle, alternating color

scheme. To target the list items that will receive the different background-color attri-

butes, you will use the elements’ unique id:

li { margin-bottom : .5em; }

li#carrot, li#gourd, li#lily, li#wine {
padding : .5em;
background-color : #fcf3ea; }

h3, p { display : inline; }
h3 { font-weight : normal; }
p { color : #666; }

One of the most important differences between the Web and a printed page is the ability to

make your designs interactive for your visitors. Sometimes this will involve scripting; other

times you can use CSS to add subtle behaviors. Of course, some designers might argue that

JavaScript, not CSS, is the rightful home of behaviors, but that is an argument best left for

a walk along Brighton Beach.

You’ll start by adding a subtle :hover behavior to your images for when the visitor’s mouse

passes over them:

a:hover img { outline : 1px solid #000; }

The interaction need not stop there. Remember that you placed each image inside an anchor?

Pomegranate

Now you can put those anchors to work by using the :target pseudo-class. When your

visitors click an anchor, they will be taken directly to the named list item (Figure 4.5).

You’ll then give this targeted list item a different background color, a border, and higher-

contrast text:

li:target {
margin : .5em 0;
padding : .5em;
border : 1px solid #dab69c;
color : #000; }

li:target p { color : #000; }

Note

Because of a lack of implementation,
you may not have previously used the
outline property, which specifies an
outline for a box. Drawn around the
outside of the border and on top of a
box, the outline does not affect the
height or width of a box.

Note

If you haven’t had the time yet to
cook up this design for yourself,
don’t worry; I have saved you the
trouble. You can find all the files you
need for this tasty example at www.
transcendingcss.com/support/.

Part 4: Transcendence 279

04_TCSS-3_x.indd 27904_TCSS-3_x.indd 279 10/27/06 5:57:17 PM10/27/06 5:57:17 PM

04_TCSS-3_x.indd 28004_TCSS-3_x.indd 280 10/27/06 5:57:18 PM10/27/06 5:57:18 PM

Same design, different markup
I am sure the debate over how to mark up this type of content will
rumble on long after I have ridden my scooter into the sunset. Some
Web designers and their developer counterparts will insist that an
unordered list containing headings and paragraphs is best; others will
argue the case for a definition list.

When using CSS to the fullest, it matters little which markup solution
you prefer—each is just as valid. To accomplish your design, CSS does
the presentational hard work, whatever the markup.

4.6 Showing that the same visual design can be achieved even when different markup is used

Look at the screenshots shown here (Figure 4.6). On the left is the
visual result of using an unordered list, and on the right is a definition
list complete with definition terms and descriptions. Can you see a
difference?

Part 4: Transcendence 281

04_TCSS-3_x.indd 28104_TCSS-3_x.indd 281 10/27/06 5:57:24 PM10/27/06 5:57:24 PM

CSS image zoom sidebar
When it comes to writing markup, I am fundamentally lazy. I much prefer sorting through

my record collection than rewriting lines of code several times. When you need to re-create

this design as a sidebar, what could be better than reusing the markup from the previous

example?

For this design, you will transform the same unordered list into a sidebar—but this is

a sidebar with a difference. Your first job is to make several minor changes to the CSS,

which sets the stage for your sidebar and any content that sits alongside it. You are opt-

ing here for a flexible content area that will expand to fill 80 percent of the width of the

browser window:

body {
width : 80%;
margin : 0 auto;
padding : 40px 0;
background-color : #fff;
font : 72%/1.6 “Lucida Grande”, Verdana, sans-serif;
color : #333; }

In this design, a single unordered list is all it takes to create the sidebar; an outer, con-

tainer division is not required. Start by floating the list to the left and styling it to match

this new design. Then add a background color, a border, and space at its top into which to

position the images:

ul {
position : relative;
float : left;
width : 316px;
margin-right : 20px;
padding : 350px 10px 40px 10px;
background-color : #fcf3ea;
border : 1px solid #dab69c; }

Finally, style the text and the images. If your images are larger than 100 pixels, give them

a display size of 100 pixels by 100 pixels. Under regular circumstances, resizing images

using either HTML or CSS is not recommended. Enlarging an image will often result in

pixilated results, and reducing the display size of a large image will increase the time it

takes for an image to download. In this example, the minor changes to the image sizes will

create the zoom effect using a single set of images:

282 Transcending CSS

04_TCSS-3_x.indd 28204_TCSS-3_x.indd 282 10/27/06 5:57:25 PM10/27/06 5:57:25 PM

4.7 Using absolute positioning for the grid design

li, h3, p { display : inline; }
li p { color : #666; }

h3 img {
position : absolute;
padding : 1px;
height : 100px;
width : 100px;
outline : 1px solid #ccc; }

Position each image in a grid design by using absolute positioning (Figure 4.7):

#pomegranate h3 img { top : 10px; left : 10px; }
#carrot h3 img { top : 10px; left : 115px; }
#onion h3 img { top : 10px; left : 220px; }
#gourd h3 img { top : 115px; left : 10px; }
#strawberry h3 img { top : 115px; left : 115px; }
#lily h3 img { top : 115px; left : 220px; }
#fig h3 img { top : 220px; left : 10px; }
#wine h3 img { top : 220px; left : 115px; }
#bean h3 img { top : 220px; left : 220px; }

Part 4: Transcendence 283

04_TCSS-3_x.indd 28304_TCSS-3_x.indd 283 10/27/06 5:57:26 PM10/27/06 5:57:26 PM

4.8 Without a z-index value, images
remain behind those that follow
in the source order

Image zoom with CSS
Using CSS can help you create interactive, unconventional designs without scripting. For

this design, your aim is to create an image-zooming feature by using CSS dynamic pseudo-

classes. You need only one set of images to create the effect.

Start building the zooming effect by defining a style for the images only for when a

visitor’s mouse hovers over them. This new style changes the display size of the images

and adds padding and a higher-contrast border:

a:hover img {
width : 160px;
height : 160px;
padding : 5px;
background-color : #fff;
border : 1px solid #333; }

This simple CSS should be all you need to create the zooming effect, but it has a “gotcha.”

If you do not give a positioned element a specific z-index value, the last element in the

document source appears closest to the viewer. This will result in your cunningly reposi-

tioned images staying behind those that follow them in the source order of the document.

This is hardly the effect you want (Figure 4.8).

Adding a high z-index value to all your images will ensure that these hover images stay in

front of their neighbors:

a:hover img {
z-index : 100; }

Excited? Fire up your nearest Web browser to see the effect of your CSS image-zooming

interface in action (Figure 4.9).

284 Transcending CSS

04_TCSS-3_x.indd 28404_TCSS-3_x.indd 284 10/27/06 5:57:26 PM10/27/06 5:57:26 PM

4.9 By setting a z-index value, the rollover effect is created

Part 4: Transcendence 285

04_TCSS-3_x.indd 28504_TCSS-3_x.indd 285 10/27/06 5:57:27 PM10/27/06 5:57:27 PM

4.10 The inspiration for the design (left), the final layout (right), and the markup (bottom)

286 Transcending CSS

04_TCSS-3_x.indd 28604_TCSS-3_x.indd 286 10/27/06 5:57:27 PM10/27/06 5:57:27 PM

Relative positioning
One of the main principles of the Transcendent CSS approach is the separation of meaning

and presentation not only in your markup but also in your mind.

Look at the following example, and remember the content-out approach you learned in

Part 1, “Discovery.” The markup is essentially the same as the examples you worked with

earlier, although the visual design and layout are different (Figure 4.10).

Set the stage for this flexible layout, a design that will expand to 92 percent of the

browser window width but will never go smaller than 770 pixels:

body {
width : 92%;
min-width : 770px;
margin : 0 auto;
padding : 100px 0;
background-color : #fff;
font : 88%/1.4 Calibri, “Lucida Grande”, Verdana, sans-serif;
color : #333; }

You should add position : relative; to establish the unordered list as the positioning

context for any of its positioned descendents:

ul { position : relative; }

Add a border and a dotted background-image property that will repeat vertically in the

center:

ul {
border : 2px solid #96b440;
background : url(ul.png) repeat-y 51% 0; }

Each list item will expand to fill half the width of your list. To give each item its own

distinctive styling, target it by using its id attribute value:

li {
position : relative;
width : 49%;
padding-bottom : .5em; }

Part 4: Transcendence 287

04_TCSS-3_x.indd 28704_TCSS-3_x.indd 287 10/27/06 5:57:29 PM10/27/06 5:57:29 PM

#pepper {
margin : 5px;
background : #96b440; color : #fff; }

#tomato {
margin : 5px;
background : #a00100;
color : #fff; }

#cuisine {
position : absolute;
top : 0;
right : 0; }

Styling the headings
Each of your list items contains the following: a third-level heading, a paragraph of text,

and an inline image.

Your first task is to style each of the headings with unique margins, padding, and subtle

control over typography:

h3 {
margin : 0 10px;
padding : 10px 0;
font : 160% Constantia, Verdana, sans-serif;
letter-spacing : 1px; }

04_TCSS-3_x.indd 28804_TCSS-3_x.indd 288 10/27/06 5:57:29 PM10/27/06 5:57:29 PM

#asparagus h3 {
margin-right : 0;
padding-left : 160px; }

#cuisine h3 {
margin : 0 20px 10px 30px;
padding-bottom : 10px;
font-size : 200%;
border-bottom : 1px solid #333; }

Paragraphs
The key to making this layout break away from a rigid, box-based design is a combination of

positioning and alpha-transparent PNG images. These images break out of their containers

to give the design a more organic feel. You should start by applying right and left margins

and some bottom padding to add white space around your text and give it room to breathe:

p { margin : 0 10px; padding-bottom : 10px; }

You will soon be giving each image its own position. Right and left padding within the

paragraphs that contain them will create the space into which these images will then be

positioned (Figure 4.11):

#pepper p {
margin-right : 0;
padding-right : 110px; }

#asparagus p {
margin-right : 0;
padding-left : 160px; }

04_TCSS-3_x.indd 28904_TCSS-3_x.indd 289 10/27/06 5:57:31 PM10/27/06 5:57:31 PM

4.12 Positioning images absolutely

4.11 Creating padding around the
paragraphs gives needed space
for images

#tomato p {
margin-right : 0;
padding-right : 110px; }

#cuisine p {
margin : 0 30px 10px 30px;
border-bottom : 1px solid #ccc; }

Positioning the images
Now you can absolutely position three of the images into the spaces you have created

(Figure 4.12):

li img { position : absolute; }

#pepper img {
top : 10px;
right : -50px; }

#asparagus img {
top : -5px;
left : 0; }

#tomato img {
top : 10px;
right : -50px; }

The image within the id of cuisine demands special treatment. You will use a combina-

tion of techniques to achieve the visual effect you are looking for in this design.

Adding float : right; to this image enables its neighboring text to flow around it:

#cuisine img {
float : right; }

By positioning the image relatively, offset from its position in the normal flow, you

can move the image outside the confines of both the list item and the unordered list

(Figure 4.13):

#cuisine img {
position : relative;
top : -100px;
right : -60px; }

290 Transcending CSS

04_TCSS-3_x.indd 29004_TCSS-3_x.indd 290 10/27/06 5:57:33 PM10/27/06 5:57:33 PM

4.15 Accomplishing a rich Web design using relative positioning4.14 Using an effective negative top margin value

4.13 Adding a sophisticated look by
positioning images outside the
list item and ordered list

Negative margins
What about all that white space? It’s not quite the desired visual effect you were looking

to achieve. It is important to remember that when an element is relatively positioned, it is

visually offset from where it would ordinarily appear within the normal flow, and the Web

browser reserves that space and does not allow other elements to flow into it.

The answer to this unwanted white space comes from using negative margins on this

offset image. By setting a negative top margin value, the following text is effectively

moved up over the space where the image would have been displayed before it was offset

(Figure 4.14):

#cuisine img {
margin : 0 0 -100px -70px; }

Note: You can find all the files you need for this example at www.transcendingcss.com/
support/.

With this sound knowledge of how positioning works, you will find that you have even

greater confidence to turn the humblest meaningful markup into striking designs that

break away from common Web design conventions (Figure 4.15).

Part 4: Transcendence 291

04_TCSS-3_x.indd 29104_TCSS-3_x.indd 291 10/27/06 5:57:34 PM10/27/06 5:57:34 PM

4.17 Floating the listed items

4.16 The inspiration for the layout (left), the final design (right), and the markup (bottom)

292 Transcending CSS

04_TCSS-3_x.indd 29204_TCSS-3_x.indd 292 10/27/06 5:57:35 PM10/27/06 5:57:35 PM

Creative floating
For the next example (Figure 4.16), I have already made an interface element for a

toyshop Web site. You will use a combination of floats and percentage measurements to

create a flexible and distinctive product layout.

Look closely, and you will see that a single ordered list is the most appropriate element to

choose. What you can’t see, but is equally as important as the design, is that the combined

total weight of markup and CSS is a tiny 4 KB.

Start implementing the design by setting a few basic styles for the <body> of your page:

body {
background-color : #fff;
font : 82%/1.4 Calibri, “Lucida Grande”, Verdana, sans-serif;
color : #333; }

In many lists that display products or are used for navigation, items are listed in no par-

ticular order, so an unordered list is the most appropriate element. For this example, imag-

ine that the items are listed in order of their popularity, meaning an ordered list would be

most appropriate.

First define the width of your list, up to a maximum of 92 percent of a containing element

and down to a minimum width of 950 pixels:

ol {
width : 92%;
min-width : 950px;
margin : 0 auto;
border-top : 40px solid #e94c92; }

A thick pink border tops off the design. With the styling for the ordered list now defined,

it is time to float each of its items. Because this design has four items, set a symmetrical

width of 25 percent on each (Figure 4.17):

li {
float : left;
width : 25%;
padding-top : 2em;
background : #f6ecf5 url(li.png) repeat-x 0 100%; }

Part 4: Transcendence 293

04_TCSS-3_x.indd 29304_TCSS-3_x.indd 293 10/27/06 5:57:36 PM10/27/06 5:57:36 PM

04_TCSS-3_x.indd 29404_TCSS-3_x.indd 294 10/27/06 5:57:36 PM10/27/06 5:57:36 PM

Dean Edwards’s IE7 scripts
In 2005, with browser development at Microsoft stalled at Internet
Explorer 6 and with no plans to release an updated browser before
the Windows Vista operating system, Web designers and developers
had grown increasingly frustrated at Internet Explorer’s lack of
development.

Dean Edwards, a UK-based developer with a Web server in his kitchen
and a passion for standards and for scripting, decided to take matters
into his own hands and advance IE through the use of clever scripting.
Edwards’s solution uses JavaScript to parse style sheets into a form
that Internet Explorer 6 and older versions can understand.

Dean Edwards’s IE7 scripts allow you to use CSS2 and even some CSS3
selectors in your style sheets to transform legacy versions of Inter-
net Explorer into a shiny new browser capable of interpreting the
following:

 • Child selectors

 • Adjacent sibling selectors

 • Attribute value selectors

 • :first-child, :last-child, :only-child, and :nth-child
structural pseudo-classes

 • :before and :after generated content

The scripts enable :hover, :active, and :focus dynamic pseudo-
classes on all elements, not just on links, and they make fixed posi-
tioning possible. Dean Edwards’s IE7 scripts also add support for PNG
alpha-transparency within older versions of Internet Explorer.

Note: You can download all the necessary Dean Edwards IE7 files
along with the full implementation instructions at http://
dean.edwards.name/IE7/.

CONDITION IS EVERYTHING
Microsoft engineers have suggested that designers and develop-
ers abandon their use of CSS hacks and switch to using Microsoft’s
proprietary conditional comments. Conditional comments are sup-
ported only by Internet Explorer for Windows, and they make it simple
to target versions of Internet Explorer by placing comments in the
<head> portion of your document. Although the most common use
for these comments is to serve specific style sheets to work around
bugs and rendering errors in legacy Internet Explorer versions, you
can just as easily use them to serve Dean Edwards’s IE7 scripts only
to browsers that need them. For example, this comment will serve the
ie7- standard-p.js file only to versions of Internet Explorer 6 and older.

<!--[if lt IE 6]>
<script src=”ie7-standard-p.js” type=”text/javascript”>
</script>
<![endif]-->

Part 4: Transcendence 295

04_TCSS-3_x.indd 29504_TCSS-3_x.indd 295 10/27/06 5:57:40 PM10/27/06 5:57:40 PM

Attribute and child selectors
For this example, you will use attribute selectors in place of the more normal id selectors

(i.e., #cake) to bind the styling to each element and to give three of the four list items

their own distinctive background color.

Attribute selectors are amazingly powerful; they offer ways to style an element either based

on whether an element has an attribute name such as href or based on the attribute value.

You will also be using child selectors. These offer you the ability to style elements based on

their parent element.

For this example, you’ll use both attribute selectors and child selectors to give three of the

four list items their own distinctive background color:

li[id=”cake”], li[id=”clagnut”]{
background-color : #e185bb; }

li[id=”brucy”] {
background-color : #fff; }

Now style each of the headings and paragraphs that are children of the list items, trans-

forming their typographic style and giving each a 1-pixel bottom border:

li > h3 {
margin : 0 10px 10px 10px;
font-size : 160%;
font-weight : normal;
text-transform : uppercase;
letter-spacing : -1px;
border-bottom : 1px solid #e94c92;
color : #a6376a; }

li > p { margin : 0 10px; }

Once again, by floating images you allow the text to wrap around them. By offsetting the

images using negative positioning and then by using a negative bottom margin, which

allows any text to move up into the space left behind, the design takes on a more fluid

feel, free from the confines of conventional boxes (Figure 4.18):

Note

You should always take care when
using attribute selectors in com-
bination with straight id and class
selectors to avoid specificity issues.
Attribute selectors are less specific
than both id and class selectors.

296 Transcending CSS

04_TCSS-3_x.indd 29604_TCSS-3_x.indd 296 10/27/06 5:57:40 PM10/27/06 5:57:40 PM

4.19 Visually place the images between list items by
floating and using relative positioning

4.18 Using negative positioning and a negative bottom margin
gives a more fluid look and feel

h3 > img {
position : relative;
top : -100px;
float : right;
margin-bottom : -120px; }

Playing with the layout
You could choose to alter this design in a host of different ways, all without making

any changes to your meaningful markup. For example, try floating the images to the left

and then use relative positioning to visually place the images between the list items

(Figure 4.19):

li { position : relative; }

li > p { margin : 0 40px 0 10px; }

h3 > img {
float : left;
position : relative;
top : -10px;
left : -50px;
margin-right : -50px; }

Part 4: Transcendence 297

04_TCSS-3_x.indd 29704_TCSS-3_x.indd 297 10/27/06 5:57:41 PM10/27/06 5:57:41 PM

4.20 Creating alternating
backgrounds on the sidebar

Making a sidebar
If sidebars are what you are seeking, look no further. You can easily transform the same

markup from the previous example into a sidebar. In the grand tradition, apply basic styles

to the <body> element and list:

body {
background-color : #f9e6f6;
font : 92%/1.4 Calibri, “Lucida Grande”, Verdana, sans-serif;
color : #333; }

ol {
width : 300px;
margin : 0 auto; }

Add a fat border to the list and a background-image property at the top to give an extra

level of cuteness that matches the characters on display. Note that the 150-pixel top pad-

ding matches the height of the background image. This padding moves the list items down

to allow the image to show:

ol {
float : right;
width : 300px;
margin : 0 auto;
padding-top : 150px;
background : #fff url(ul.png) no-repeat;
border : 5px solid #e94c92; }

Now pull those attribute selectors out of the bag one more time to create the striped,

alternating background on every second item (Figure 4.20):

li {
clear : both;
padding : .5em 10px; }

li[id=”cake”], li[id=”clagnut”]{ background-color : #f185bb; }

298 Transcending CSS

04_TCSS-3_x.indd 29804_TCSS-3_x.indd 298 10/27/06 5:57:42 PM10/27/06 5:57:42 PM

4.22 Switching the positioning of the
sidebars

4.21 Using negative margins for
neighboring text

Relatively position and float your images, and use negative margins to suck the neighbor-

ing text into the space created by their offset (Figure 4.21):

h3 {
text-align : right;
font-size : 160%;
font-weight : normal;
text-transform : uppercase;
border-bottom : 1px solid #e94c92;
color : #a6376a; }

h3 > img {
position : relative;
top : -60px;
left : 0;
float : left;
margin : 0 0 -70px -50px; }

Remember Part 2, “Process,” where you learned about wireframing with XHTML and CSS?

What if your client asks you to switch the position of your swanky new sidebar from the

right of the page to the left? With some minor edits to your CSS, you are ready to go

(Figure 4.22):

h3 {
text-align : left;
font-size : 160%;
font-weight : normal;
text-transform : uppercase;
border-bottom : 1px solid #e94c92;
color : #a6376a; }

h3 > img {
position : relative;
top : -60px;
right : 0;
float : right;
margin : 0 -50px -70px 0; }

Part 4: Transcendence 299

04_TCSS-3_x.indd 29904_TCSS-3_x.indd 299 10/27/06 5:57:42 PM10/27/06 5:57:42 PM

4.23 Combining techniques for a dynamic page

300 Transcending CSS

04_TCSS-3_x.indd 30004_TCSS-3_x.indd 300 10/27/06 5:57:43 PM10/27/06 5:57:43 PM

Combining techniques
Why stick with just positioning or floats alone? When you combine many of these tech-

niques, you can achieve amazing possibilities from the simplest of markup (Figure 4.23).

Opposite, you can see the static design for an interface for a flower seller’s Web site. One

of the aims of this design is to create a flexible layout that adapts to wider window widths

and also allows a visitor to increase the default text size in the browser without the layout

falling apart.

At first glance, you might imagine that implementing this design will need multiple

 divisions—perhaps one for the images at the top, possibly another for the main content,

and still more for the columns. Think back to the content-out approach, and what do

you see?

Although this design might at first appear complex, the markup you will use is not; it

includes only one division, a heading, and an unordered list. As in previous examples, each

item in the list contains a heading, two paragraphs of content, and an image:

<div id=”content”>

<h2>Flowers in my garden</h2>

<li id=”tulip”>
<h3>Purple Tulip £10.00 per stem</h3>
<p>
First paragraph.</p>
<p>Second paragraph</p>

</div>

The key to implementing this design with so little markup is understanding that CSS gives

you the ability to think outside the conventional rows-and-columns approach. By using

CSS positioning, you can offset an element to a new position within its parent container or

anywhere on the page.

Part 4: Transcendence 301

04_TCSS-3_x.indd 30104_TCSS-3_x.indd 301 10/27/06 5:57:44 PM10/27/06 5:57:44 PM

4.24 Creating an effect of symmetrical columns

Start by adding a few basic styles to the <body> element of your page, and then add

position : relative; (but no offsets) to the content division to establish it as the

positioning context for its positioned descendents:

body {
width : 80%;
min-width : 800px;
margin : 0 auto;
background-color : #f5efff;
font : 88%/1.4 Cordoba, Verdana, sans-serif;
color : #000; }

div#content {
position : relative; }

Creating the floated columns
To create the effect of symmetrical columns from the items in the list, give the items a

width of 25 percent, and float each to the left. The result isn’t going to be stunning in an

instant, but you’ll be fixing that in just a moment (Figure 4.24):

li {
float : left;
width : 25%; }

302 Transcending CSS

04_TCSS-3_x.indd 30204_TCSS-3_x.indd 302 10/27/06 5:57:44 PM10/27/06 5:57:44 PM

4.25 Adding top padding to the list items

Now that the list items have become columns, you should style each one by giving it

a unique background image:

li {
float : left;
width : 25%;
background-repeat : no-repeat;
background-position : 10px 10px; }

#tulip { background-image : url(1-1_tbn.png); }
#lily { background-image : url(1-2_tbn.png); }
#blossom { background-image : url(1-3_tbn.png); }
#sunflower { background-image : url(1-4_tbn.png); }

Because the background images are all 200 pixels high, clear enough space for them to

show through by adding 200 pixels of top padding to all the list items (Figure 4.25):

li {
float : left;
width : 25%;
padding-top : 200px;
background-repeat : no-repeat;
background-position : 10px 10px; }

Part 4: Transcendence 303

04_TCSS-3_x.indd 30304_TCSS-3_x.indd 303 10/27/06 5:57:45 PM10/27/06 5:57:45 PM

4.26 Creating a masthead with links to content on the page

Making the masthead active
The design is starting to shape up, but you still have more to do. Your next task is to use

absolute positioning to move the inline images out of the normal flow of the document

and up to the top of the design.

First, you’ll need to clear some room up there by using top padding on the content division

to push its content downward:

div#content {
position : relative;
padding-top : 200px; }

Next, you can now move your inline images to the top of the design by positioning the

anchors that enclose them. This forms what on first glance might look like any common or

garden-variety branding area or masthead, but this is a masthead with a difference in that

it contains links to content elsewhere on the page (Figure 4.26). You will be using these

links in just a little while:

p a { position : absolute; top : 0;}

#tulip p a { left : 0; }
#lily p a { left : 200px; }

Active branding

It is common for sites to use hori-
zontal banners or mastheads for site
identity. These often look attractive,
but they rarely contain any useful
features, with the possible exception
of a link to a homepage.

When you add navigation and other
functionality to a branding area, you
make it active and more useful for
your visitors.

304 Transcending CSS

04_TCSS-3_x.indd 30404_TCSS-3_x.indd 304 10/27/06 5:57:45 PM10/27/06 5:57:45 PM

4.27 Adding some finishing touches

#blossom p a { left : 400px; }
#sunflower p a { left : 600px; }

With your images in place and the design coming together nicely, it is time for you to add

some finishing touches to the unordered list (Figure 4.27):

 • A graduated background that helps define the content area

 • A fat 5-em top border onto which to position your heading

 • A 1-pixel bottom border that stops your eyes from wandering off the bottom of the page

Here’s the code to add these touches:

ul {
background : url(ul.png) repeat-x;
border-top : 5em solid #f5efff;
border-bottom : 1px solid #999;
overflow : hidden; }

Part 4: Transcendence 305

04_TCSS-3_x.indd 30504_TCSS-3_x.indd 305 10/27/06 5:57:46 PM10/27/06 5:57:46 PM

04_TCSS-3_x.indd 30604_TCSS-3_x.indd 306 10/27/06 5:57:47 PM10/27/06 5:57:47 PM

Clearing floats without added markup
You may have spotted in the previous code that I added overflow
: hidden; to the rules for the unordered list. You might be wonder-
ing why. When you float an element either left or right, you remove it
from the normal flow of the document. In this example, I have floated
both the list items. Because the list now visually has no children, it
collapses in on itself and has no height, which is not handy when
using a background image that you want to wrap around your columns
(Figure 4.28).

overflow : hidden; }

In the past, many designers added clearing elements to their
markup—breaks and divisions—to help create the visual effect they
wanted to achieve. This extra, presentational markup should not be
part of any meaningful document; in fact, you have other ways to
resolve this issue without resorting to hacks using markup. One of the
simplest, and my current preferred solution, is to use the overflow
property.

For a more detailed explanation about clearing floats without
structural markup, see Peter-Paul Koch’s article at www.quirksmode.
org/css/clearing.html.

4.28 Top: Collapsing list hides the background image.
Bottom: Using the overflow property to show the
background image.

Part 4: Transcendence 307

04_TCSS-3_x.indd 30704_TCSS-3_x.indd 307 10/27/06 5:57:53 PM10/27/06 5:57:53 PM

Working with type
With the structural parts of the design now implemented, it is time for you to concentrate

on typography. Your first task will be to position the second-level heading and give it a

classic feel with italics, letter spacing, and Constantia (one of the new fonts designed by

Microsoft that comes with the Windows Vista operating system):

h2 {
position : absolute;
z-index : 3;
top : 210px;
font : italic 340% Constantia, Palatino, Times, serif;
letter-spacing : -1px;
line-height : 100%;
color : #4e5812; }

Add margins and padding to the headings and paragraphs inside your list items using a

child selector:

li > h3 {
padding : 0 10px;
font : italic 200% Constantia, Palatino, Times, serif; }

li > p {
margin : .5em 0;
padding : 0 10px; }

04_TCSS-3_x.indd 30804_TCSS-3_x.indd 308 10/27/06 5:57:54 PM10/27/06 5:57:54 PM

Add distinctive styling to the second paragraphs that follow third-level headings by target-

ing them with an adjacent sibling selector. You will notice that I have used two + combina-

tors within the selector. This selects the second paragraph following the heading:

h3 + p + p {
margin : .75em 10px 0 10px;
padding : .75em 0;
border-top : 1px solid #999; }

Putting spans to work
By now I hope you realize the tremendous creative opportunities that positioning offers

you, for large-scale layouts down to the subtlest of design details. It is with one of these

details that you can add an extra level of sparkle to this design.

Remember when you started by looking at the markup underpinning this design? Each

heading contains the price of that flower, wrapped in shiny paper. Actually, the price was

wrapped in a element, but the result will be just as attractive:

<li id=”tulip”>
<h3>Purple Tulip £10.00 per stem</h3>
<p>
First paragraph.</p>
<p>Second paragraph</p>

04_TCSS-3_x.indd 30904_TCSS-3_x.indd 309 10/27/06 5:57:56 PM10/27/06 5:57:56 PM

Glance back at the static design. These prices appear not next to the name of the flower

but at the top of the design, overlaid on the images at the top of the page.

You will give these elements a style that will set them apart from the images

behind them by using a background color, a border, and fonts that all work well at smaller

sizes:

h3 span {
position : absolute;
z-index : 2;
padding : .15em .3em;
background-color : #f3f4e4;
border : 1px solid #4e5812;
color : #333;
font : bold 52% “Lucida Grande”,”Lucida Sans Unicode”, Verdana, sans-serif;
font-variant : small-caps;
text-align : center; }

Next, you should give each element a unique position, placing them complemen-

tary to the images behind them. You can experiment with different compositions and even

place some of the elements outside their parent containers (Figure 4.29):

#tulip h3 span { top : 160px; left : -20px; }
#lily h3 span { top : 40px; left : 220px; }
#blossom h3 span { top : 150px; left : 440px; }
#sunflower h3 span { top : 60px; left : 780px; }

Note

The :target pseudo-class is currently
supported only by Firefox and its
siblings, OmniWeb and Apple Safari.
Opera and Internet Explorer users
will stay blissfully unaware that this
feature exists in your design, but Mark
Wubben has developed a JavaScript
solution to emulate the :target
pseudo-class in Internet Explorer.
See his nifty solution at http://
tests.novemberborn.net/javascript/
emulate-css-pseudo-class-target-
in-ie.html.

4.29 Placing the elements inside and outside their parent containers

310 Transcending CSS

04_TCSS-3_x.indd 31004_TCSS-3_x.indd 310 10/27/06 5:57:57 PM10/27/06 5:57:57 PM

Hearing the fat lady warming up
The design layout is complete, but you don’t want to stop there, do you? One of the rea-

sons why the Web is such an exciting medium to design for is that, unlike a printed page,

a Web page can and often should include interactive features to help visitors accomplish

their goals on your site.

CSS can provide many interactive effects without needing to resort to scripting techniques.

For the final part of this example, you’ll add some subtle interactivity to this design.

The inline images you previously positioned at the top of this design are each wrapped in

an anchor that contains a fragment identifier that points to its parent, a named list item:

Now it is time for you to put those fragment identifiers to good use by employing the CSS3

:target pseudo-class. This handy pseudo-class enables you to alter the styling of any ele-

ment that is the target of a link. For this design, you will reverse the contrast of a targeted

list item by changing its background and text color (Figure 4.30):

:target {
background-color : #4e5812;
color : #fff; }

Ride of the Valkyries
So now that the lights have dimmed and the orchestra is playing, the fat lady is on her

way to the stage. If the prospect of listening to an opera that lasts several days has little

appeal to you, don’t run for cover. CSS3 is about to take you on a ride that will be far more

exciting than Ride of the Valkyries.

In the next section, you’ll learn about CSS3 and many of the cool features it will bring to

your design for the Web. “Ah!” you might be thinking, “I can stop reading here, because

CSS3 will be a long time coming.” Well, put that those thoughts out of your mind because

not only will you learn how some of the most interesting new design possibilities will work

with CSS3 but you’ll also see solutions to emulate them in your work today.

4.30 Using the pseudo-class to
change the styling of an
element

Part 4: Transcendence 311

04_TCSS-3_x.indd 31104_TCSS-3_x.indd 311 10/27/06 5:57:58 PM10/27/06 5:57:58 PM

04_TCSS-3_x.indd 31204_TCSS-3_x.indd 312 10/27/06 5:57:58 PM10/27/06 5:57:58 PM

CSS3 (Third Time Lucky)
As Web designers turn their backs on old-fashioned, presentational layout methods and see

the advantages of minimal, meaningful markup and CSS, they recognize that to achieve

more complex, rich interfaces, they need more from CSS. Not only should the new CSS

specification build on what has gone before, making it easy to learn and more backward

compatible, but it should also provide new features for designers to solve their everyday

problems. The journey to improved CSS, however, has not been an easy one.

The first CSS specification, CSS1, was published in 1996. Its successor, CSS2, was published

less than two years later, and an updated CSS2.1 followed to address a number of errors

and inconsistencies. CSS2.1 still remains, at the time of writing, a candidate recommenda-

tion despite that many browsers now support most of its features, and standards-savvy

designers and developers have long been using CSS2.1 in their daily work.

Work on CSS3 started in 2000, but the progress of the World Wide Web Consortium (W3C)

has seemed painfully slow. For Web designers and developers who have realized that CSS2.1

cannot easily accomplish the visually rich, complex interfaces and layouts that modern Web

sites need, watching this slow process has been maddening. This is something that, as a

recently invited expert to the CSS Working Group, I hope to influence for the better.

The sum of its parts
One of the major differences between CSS3 and earlier versions is that CSS3 is a modular

specification. Because so many new features have been requested, the W3C’s CSS Working

Group decided to break down work on CSS3 into a number of separate modules:

Module name Description

Selectors Module
(www.w3.org/TR/css3-selectors/)

New, refined selectors will make it easier to target an
element based on its attributes and position in the
document flow. New pseudo-classes and pseudo-elements
will make it possible to achieve more typographic effects
without adding presentational elements to your markup.

continues

Part 4: Transcendence 313

04_TCSS-3_x.indd 31304_TCSS-3_x.indd 313 10/27/06 5:58:00 PM10/27/06 5:58:00 PM

Module name Description

Paged Media module for
printed publications
(www.w3.org/TR/css3-page/)

CSS was always intended to do more than simply style the
appearance of a document in a Web browser. Generated
content for paged media focuses on styling documents
for paper publishing and uses generated content to add
notes, leaders, markers, and footnotes. Although many
modern browsers support generated content, it is missing
from Internet Explorer 7 and may not be a priority for
implementation in a future version 8.

Backgrounds and Borders module
(www.w3.org/TR/css3-background/)

The Backgrounds and Borders module offers designers new
ways to style any box’s background or borders. It includes
a new way to attach more than one background image to
an element and to use images to create borders.

Multi-column Layout Module
(www.w3.org/TR/css3-multicol/)

Flowing text into multiple columns is a technique more
familiar in print than on the Web. The Multi-column
Layout Module is designed to make it simpler to create
columns without additional markup by using column
counts, gaps, and rules.

Advanced Layout Module
(www.w3.org/TR/css3-layout/)

The Advanced Layout Module is designed to solve many
of the common layout problems that Web designers and
developers face. It also aims to fully separate the visual
layout order from a document’s content.

Media Queries module
(www.w3.org/TR/css3-mediaqueries/)

Screen, print, and handheld are three media types
that should already be familiar to Web designers and
developers. Media queries extend the functionality of
these media types when used in combination with other
information, such as the width or height of a browser
and even the aspect ratio of a screen; this is useful for
developing for sites that will be viewed on a TV.

These modules are currently being worked on individually and are at different stages of

completion. It is the Working Group’s intention that browser makers will be able to choose

which modules they will support and when they will implement them.

314 Transcending CSS

04_TCSS-3_x.indd 31404_TCSS-3_x.indd 314 10/27/06 5:58:01 PM10/27/06 5:58:01 PM

Getting involved in making new standards
Not only is progress on CSS3 slow, but another problem for those who are interested in

helping shape the future of CSS is that the working drafts and documents for CSS are

almost impenetrable to Web designers.

Web designers are mostly visual thinkers, and they focus on what they can achieve when

using CSS, rather than on the intricate technicalities of the specifications. Much of the

language used in specifications, and other W3C documentation, is scientific and compli-

cated and does not lend itself to being easily understood by those without a background

in science or academia.

The layout algorithm distinguishes the case of an element of a-priori known width

and a shrink-wrapped element. In the former case, the target width of the template

is the width of the element itself; in the latter case, the target width is the width of

the initial containing block (often the viewport).

—The Advanced Layout Module working draft (www.w3.org/TR/css3-layout/#colwidth)

Hmmm. Answers on a postcard to…

Another problem with the specifications is that without clear examples of the visual effects

that CSS3 is designed to accomplish, Web designers have a difficult job in visualizing how

new selectors and properties will apply in their work. Many of the current examples used

throughout the various modules have little in common with practical realities.

In fairness to the W3C, specifications are technically designed to be read and understood

by browser makers and other implementers, rather than to act as training manuals for Web

designers or developers. However, strong visual examples would not only help implementers

understand how a feature should be implemented, but they would also serve as visual aids

for designers and developers who may struggle to understand much of the specifications’

complex terminology.

The W3C should not develop ideas for the specifications without input from working designers

and developers who use their tools every day. Specification development should be a three-

way partnership between designers, implementers, and the W3C. But if more Web designers

and developers are going to help the W3C’s CSS Working Group create tools that will be useful

in their everyday work, the W3C must start working hard to write documentation that can be

more widely understood.

Part 4: Transcendence 315

04_TCSS-3_x.indd 31504_TCSS-3_x.indd 315 10/27/06 5:58:01 PM10/27/06 5:58:01 PM

Back to the future
CSS3 offers many tools to enable Web designers and developers to create highly visual

designs without needing presentational markup.

It is understandable that browser makers have been reluctant to implement much of CSS3

until either the specifications have been finalized or there is widespread demand for them

to do so. However, some parts of CSS3 are already supported, albeit in a limited capacity,

by certain browsers. Where it is relevant and possible, you should take advantage of these

tools now, if only so you can become familiar with how they work.

Not enough pages are available in this book to cover all the exciting developments in CSS3,

so I have chosen to concentrate on some of the most interesting design opportunities in

CSS3: selectors, background images, columns, and finally the Advanced Layout Module, one

of the most exciting and intriguing developments to come out of the CSS Working Group.

Designing with the CSS3 Selectors Module
Web designers and developers have been asking for more efficient ways to target either

an element or a node in the document tree for styling, and the CSS3 Selectors Module

certainly does not disappoint. CSS3 offers so many new and powerful selectors that

understanding how and when to use them can be daunting. The new selectors include the

following:

 • New attribute selectors that will enable you to target an element based on only part of

its attribute, including href, src, alt, and title

 • New dynamic pseudo-classes, including :target and :lang

 • New structural pseudo-classes, including :nth-child, :last-child, :only-child, and

even :first-of-type and :last-of-type

I can see ways that almost all the new CSS3 selectors will improve the lives of Web

 designers and developers in the future. In the following section, you’ll learn how to work

with one of the most helpful new selectors to solve an alarming common problem. No, it’s

not what to do when your Apple iPod runs out of battery; it’s how to make zebra-striped

tables and lists.

Note

You can read more about the new CSS3
selectors in my article “A Tribute to
Selectors” at www.stuffandnonsense.
co.uk/archives/css_a_tribute_to_
selectors.html and in Roger Johansson’s
excellent article “CSS3 Selectors
Explained” at www.456bereastreet.
com/archive/200601/
css_3_selectors_explained/.

316 Transcending CSS

04_TCSS-3_x.indd 31604_TCSS-3_x.indd 316 10/27/06 5:58:01 PM10/27/06 5:58:01 PM

Improving readability with zebra stripes
When you leave tables for layout behind and use them only for presenting tabular informa-

tion, you emphasize their meaning. Many designers choose to help the readability of this

tabular information by giving different styling to alternate rows, often simply by changing

the color of the background. In the past, this simple design device would have required

you to add a presentational class attribute to every other table row:

<table class=”discography”>
<thead>
<tr>
<td>Album</td>
<td>Year</td>
<td>Chart position (<abbr title=”United Kingdom”>UK</abbr>)</td>
</tr>
</thead>

<tbody>
<tr class=”odd”>
<td>Paul Weller</td>
<td>1992</td>
<td>8</td>
</tr>

<tr class=”even”>
<td>Wild Wood</td>
<td>1993</td>
<td>2</td>
</tr>

<tr class=”odd”>
<td>Live Wood</td>
<td>1994</td>
<td>13</td>
</tr>
</tbody>
</table>

And the CSS would be:

tbody > .odd { background-color : #fff; }
tbody > .even { background-color : #000; color : #fff; }

Plugging the holes in :nth-child
support with JavaScript and
the DOM

With browser support for :nth-child
structural pseudo-classes still rare
(at the time of this writing, only
 Konqueror 3.52 for Linux supports
them), many Web designers and devel-
opers have turned to DOM scripting
to emulate them.

Using JavaScript, you can insert a
class attribute of even on even-
numbered items in a series and style
that element using a simple CSS class
selector:

li.even {
background-color : #d0d0b0; }

li.even img {
position : relative;
left : -50px;
margin-right : -40px; }

Until more browsers support the
:nth-child pseudo-classes, DOM
scripting can be an effective method
of creating striping and other visual
effects without resorting to presenta-
tional markup.

Note: Aaron Gustafson has written a
flexible and easily updatable script
for striping table rows and list items.
Download the script and all support-
ing files exclusively at http://easy-
designs.net/code/stripey/.

Part 4: Transcendence 317

04_TCSS-3_x.indd 31704_TCSS-3_x.indd 317 10/27/06 5:58:02 PM10/27/06 5:58:02 PM

4.32 Alternating-color list items

4.31 Helping readability of tabular
information

Not only can this quickly become tedious to edit manually, it can also be a difficult effect

to achieve when the information in the table is dynamically generated.

This effect is not appropriate only for table rows. Perhaps you would like to style every

other product in an online store’s product page or even every second link in a sidebar

(Figure 4.31).

The :nth-child() pseudo-class
CSS3 provides a way for you to target odd and even table rows, list items, or other ele-

ments in a series by using :nth-child pseudo-classes. These are highly useful when you

are designing for a series of items on a page and you need to provide a way to separate

them visually.

For this example, you’ll create an attractive sidebar with alternating-color list items

(Figure 4.32). By thinking first about content and meaning, you can keep the markup for

this sidebar minimal and meaningful. Because the items in the sidebar list will be ordered

by their popularity, an ordered list is the most appropriate element to choose. Each list

item contains the name of the featured item, a short summary of it, and an image:

<ol id=”nav_sub”>

<h3>Sunflower</h3>
<p>
The family Asteraceae or, alternatively, Compositae, known as the aster, daisy
or sunflower family, is a taxon of dicotyledonous flowering plants.</p>

Simple top and left borders on this ordered list separate the sidebar content from other

elements on the page, and they also visually emphasize the effect of the images breaking

free from their containers:

ol {
list-style-type : none;
width : 400px;
border-top : 3px solid #3f080a;
border-left : 3px solid #3f080a; }

318 Transcending CSS

04_TCSS-3_x.indd 31804_TCSS-3_x.indd 318 10/27/06 5:58:02 PM10/27/06 5:58:02 PM

Floating and setting a right margin on each image will enable the text within each of the

list items to wrap around them:

li { clear : both; }

li img {
float : left;
border : none; }

Adding styles for the headings and paragraphs in the list will complete the basic sidebar:

h3, p {
margin : 0;
padding : .5em 20px; }

h3 {
font-size : 110%;
text-transform : uppercase; }

CSS3 :nth-child structural pseudo-classes enable you to style odd and even items with-

out attaching any presentational class attributes in your markup. As is often the case with

CSS, you have more than one way to accomplish the same goal, but by far the simplest

method is to use :nth-child(odd) and :nth-child(even) selectors.

The following rule applies a background color only to even-numbered list items, creating

the strong horizontal bands that are important in this design:

li:nth-child(even) {
background-color : #d0d0b0; }

Finally, you can create the effect of the images breaking out of their boxes by using rela-

tive positioning to move every image in an “even-numbered” list item 50 pixels to the

left. Adding a negative right margin will suck the surrounding text into the space that this

image would have occupied:

li:nth-child(even) img {
position : relative;
left : -50px;
top : -20px;
margin-right : -40px; }

CSS computation

If, after reading this, you feel a
strong urge to dive into the speci-
fications for structural pseudo-classes,
you might soon be wondering if
you have stumbled across a lesson
in mathematics by mistake. As well
as the more self-explanatory
:first-child, :last-child, and
:nth-child pseudo-classes, you can
target specific elements based on the
number of siblings that have come
before them.

Imagine you have a long table of data
with more than fifty rows; it will be
difficult for a visitor to scan this table
to find the specific piece of informa-
tion he needs.

tr:nth-child(10n-1) will count
the number of rows in increments of
10 (10, 20, 30, and so on) and target
the rows that come immediately
before (-1), enabling you to style the
9th, 19th, 29th, and so on, rows. You
might choose to add a thick bot-
tom border and extra white space to
break the table into sections to help
readability.

Part 4: Transcendence 319

04_TCSS-3_x.indd 31904_TCSS-3_x.indd 319 10/27/06 5:58:03 PM10/27/06 5:58:03 PM

Designing with the
Backgrounds and Borders Module
I’ve been working hard, all hours of the day and night. My eyes are bloodshot, and my fin-

gers are raw, all because I want to invent a time machine—not your average time machine,

no twinkling lights or shiny buttons for me (although a time machine that is shaped like a

blue police box would be cool). I want a CSS time machine.

Where or when would I go? To the future perhaps, to find out the results of next year’s

 racing results or the winner of the 2010 World Cup (actually I know that already)? No, I

would return to 1996 and insist that the CSS Working Group add multiple background

images to CSS1.

Attaching more than one background image to any element is on the wish list of almost

every CSS-savvy designer I know. Alas, until CSS3 it has been possible to use only a single

image per element.

Web designers and developers have worn their fingers to the bone concocting ways to

implement even the simplest design element that requires more than one image. For such a

simple effect, these solutions have become increasingly complex.

Like three-button jackets with side vents, fishtail parkas, and Fred Perry shirts before

them, rounded corners are the fashionable must-have for many a “mod”ern Web site or

application.

04_TCSS-3_x.indd 32004_TCSS-3_x.indd 320 10/27/06 5:58:03 PM10/27/06 5:58:03 PM

Adding rounded corners to a fixed-pixel-width element using CSS1 and CSS2.1 has been

relatively straightforward; you do it usually by attaching a top image to one element and a

bottom image to another. Creating a resizable box with rounded corners, custom borders, or

drop shadows has always been a more complex affair, usually requiring additional <div> or

 elements to be added to your markup.

For example:

<div class=”content_introduction”>
<div class=”bi”>
<div class=”bt”>
<div></div>
</div>
<p>A flexible box with rounded corners</p>
<div class=”bb”>
<div></div>
</div>
</div>

This is hardly the most semantic use of divisions and one where the calorie count of your

markup can easily weigh down the amount of content. CSS3 puts this markup on a diet by

enabling you to attach more than one image to the background of an element. Your new,

slim markup is as follows:

<p class=”content_introduction”>A flexible box with rounded corners</p>

04_TCSS-3_x.indd 32104_TCSS-3_x.indd 321 10/27/06 5:58:04 PM10/27/06 5:58:04 PM

That’s it! It’s lighter, healthier, and with almost 100 fewer characters. The CSS, on the other

hand, is a little fatty. You can add several background images to your division, separating

each image with a comma (Figure 4.33):

div.content_introduction { background-image :
url(“top_left.png”),
url(“top_right.png”),
url(“bottom_right.png”),
url(“bottom_left.png”),
url(“top_center.png”),
url(“middle_right.png”),
url(“bottom_center.png”),
url(“middle_left.png”); }

You can also set the repeat properties, taking care to use the same order for the repeat as

for your list of images:

div.content_introduction { background-repeat :
no-repeat, no-repeat, no-repeat, no-repeat, repeat-x,
repeat-y, repeat-x, repeat-y }

Finally, you can position each background image to create the effect of a flexible, resizable

box (Figure 4.34):

div.content_introduction { background-position:
top left,
top right,
bottom right,
bottom left,
top left,
top right,
bottom right,
bottom left; }

Phew! It’s not quite the slimmest CSS, but it keeps the presentation information where

it belongs, in a style sheet rather than in your markup, bulking it up with high-calorie

“divness.”

Note: At the time of writing, only those health-conscious folks at Apple have made multiple
backgrounds available in Safari and other browsers based on the WebKit engine.

Plugging the holes in multiple
background images using
JavaScript and the DOM

Rounded corners have become almost
a standard design element in Web
sites and application design; square
corners just don’t cut it anymore.

Rounded corners are not the only
use for multiple background images,
and to make them a possibility in a
wider range of browsers, designers
and developers have been turning to
JavaScript to simulate multiple back-
ground images.

Among the many JavaScript solutions,
one developed by Roger Johansson
solves many problems by inserting
additional elements into a document
via the DOM. You can find Johansson’s
solution at www.456bereastreet.com/
archive/200505/transparent_
custom_corners_and_borders/.

322 Transcending CSS

04_TCSS-3_x.indd 32204_TCSS-3_x.indd 322 10/27/06 5:58:06 PM10/27/06 5:58:06 PM

4.34 Creating a flexible box

4.33 Adding multiple background images

Part 4: Transcendence 323

04_TCSS-3_x.indd 32304_TCSS-3_x.indd 323 10/27/06 5:58:07 PM10/27/06 5:58:07 PM

4.35 The final layout (top) and the markup (bottom)

324 Transcending CSS

04_TCSS-3_x.indd 32404_TCSS-3_x.indd 324 10/27/06 5:58:07 PM10/27/06 5:58:07 PM

4.36 Previewing the naked document first

Designing with multiple background images
Whatever platform you are working on—Windows, OS X, or Linux—you will be able to work

along with most of the techniques in the next example (Figure 4.35). However, as this

book goes to press, only Mac users running Safari and other browsers based on WebKit will

be able to see the full benefits of multiple background images. If that’s not a good enough

reason to switch to a Mac, I don’t know what is.

For this example, you’re designing an interface element for a gift site that has been

inspired by a teen magazine. You will use percentage and em measurements to create a

flexible design and use positioning, image replacement, and multiple background images to

create a different type of e-commerce layout.

On the opposite page is the static design you are aiming to achieve, plus the meaningful

elements you will use to mark up your content. Look closely, and you will see you need

headings, paragraphs, a form, and a single unordered list. Look Ma, no divisions! What you

can’t see, but is important for e-commerce stores, is that the total combined “weight” of

the markup and CSS is only 8Kb.

Before you get carried away with this design, you’ll preview the naked document in a

browser (Figure 4.36).

You’ll set the stage for the design by applying some simple rules to both the root <html>

and <body> elements. Because this design will be flexible, all the measurements you’ll use

are based on em:

html {
padding : 2em 0;
background-color : #fff;
color : #333; }

Note

Windows users, you can test your own
examples in Safari and just about any
other browser by using BrowserCam, a
subscription service that takes screen
shots of your pages in just about
any browser and operating system
combination. Find out more at www.
browsercam.com.

Part 4: Transcendence 325

04_TCSS-3_x.indd 32504_TCSS-3_x.indd 325 10/27/06 5:58:08 PM10/27/06 5:58:08 PM

body {
font : 78%/1.5 “Lucida Grande”,”Lucida Sans Unicode”, Verdana, sans-serif;
width : 66em;
min-width : 710px;
margin : 0 auto; }

Because you’ll use absolute positioning to place the top-level heading and tagline, you will

need to add position : relative; to the <body> element to establish it as the first

positioning context:

body {
position : relative; }

Positioning and z-index
Positioning and z-index are two of the main techniques making this design possible.

The first part of the positioning process is to place the top-level heading and tagline in

position. You will then use the Phark image replacement technique discussed in Part 2,

“Process,” to replace the browser text with graphic images (Figure 4.37):

4.37 Placing the top-level heading and tagline before replacing the browser text
with images

04_TCSS-3_x.indd 32604_TCSS-3_x.indd 326 10/27/06 5:58:09 PM10/27/06 5:58:09 PM

h1 {
position : absolute;
z-index : 2;
top : 10px;
left : 10px;
width : 375px;
height : 65px;
background : url(h1.png) no-repeat 0 0; }

h1 + p {
position : absolute;
z-index : 2;
top : 20px;
right : 0;
width : 395px;
height : 70px;
background : url(p.png) no-repeat 0 0; }

h1, h1 + p {
text-indent : -9999px; }

Because you will position many of the elements within the form, the form must also

become a positioning context by adding position : relative; but no offsets:

form {
position : relative;
z-index : 1;
padding : 0 1em;
min-height : 38em;
background-color : #f9e6f6; }

04_TCSS.indd 32704_TCSS.indd 327 11/2/06 2:36:31 PM11/2/06 2:36:31 PM

4.38 Attaching the characters image to its background

You will now position the unordered list 10 pixels from the top of the form and use a com-

bination of minimum height and padding to allow room for the montage of characters:

ul {
position : relative;
top : 10px;
min-height : 80px;
padding-top : 300px; }

It’s time to complete the unordered list by attaching the characters image to its back-

ground. Because this image sits behind the positioned list items, the design takes on an

unusual out-of-the-box appeal (Figure 4.38):

ul {
background : url(ul.jpg) no-repeat 50% 0; }

Z’s not dead, baby; Z’s not dead

In combination with alpha-transpar-
ency in PNG images, stacking elements
with z-index is a powerful creative
tool. Remember geometry at school?
The x-axis represents the horizontal;
the y-axis represents the vertical. In
CSS, the z-axis represents depth. Ele-
ments that are stacked using z-index
are arranged from front to back. It
is also important to understand that
z-index is applied to only those ele-
ments with a position property and
a value—in other words, no position-
ing property and value, no z-index.

z-index values can be either nega-
tive or positive, and the element with
the highest value appears closest
to the viewer, regardless of its order
in the source. If more than one ele-
ment has the same z-index, the
element that comes last in the source
comes out on top of the pile.

Note: For a more detailed examina-
tion of z-index, read my article at
http://24ways.org/advent/
zs-not-dead-baby-zs-not-dead.
More about complex z-index rela-
tionships from Aleksandar Vacic at
http://aplus.co.yu/css/z-pos/.

328 Transcending CSS

04_TCSS-3_x.indd 32804_TCSS-3_x.indd 328 10/27/06 5:58:13 PM10/27/06 5:58:13 PM

4.39 Previewing the design

You’ll now position each of the five list items to create the appearance of five columns. I

have calculated their positioning to add a small gutter between them:

li {
position : absolute;
width : 10em;
padding : 1em;
background-color : #f9496b;
color : #fff; }

li[id=”a”] { left : 0; }
li[id=”b”] { left : 13em; background-color : #f185bb; }
li[id=”c”] { left : 26em; }
li[id=”d”] { left : 39em; background-color : #f185bb; }
li[id=”e”] { left : 52em; }

The layout of this design is beginning to take shape, so press on and preview the design in

your browser (Figure 4.39).

Part 4: Transcendence 329

04_TCSS-3_x.indd 32904_TCSS-3_x.indd 329 10/27/06 5:58:14 PM10/27/06 5:58:14 PM

Form element styling
To add a little flair to each of the form elements, it is time to pull out one of the most

flexible selector types in the CSS designer’s toolbox, an attribute selector. Peeking into the

markup, you will see that each of the list items contains a text input for the quantity and

an “Add to cart” button:

<label for=”a_qty”>Add to cart
<input type=”text” id=”a_qty” />
<input type=”submit” value=”Add” />

Without attribute selectors, you would need to target each form element either by using its

id (requiring multiple CSS selectors) or by adding a class attribute such as this:

<label for=”a_qty”>Add to cart
<input type=”text” id=”a_qty” class=”qty” />
<input type=”submit” value=”Add” class=”submit” />

Attribute selectors remove the need for this extra markup. They target inputs based on

their type and their value (Figure 4.40):

input[type=”text”] { width : 4em;
font : 82% “Lucida Grande”, “Lucida Sans Unicode”, sans-serif; }

input[value=”Add”] {
padding : 0 .25em;
color : #fff;
border : 2px double #9c2f45;
border-top-color : #fff;
background-color : #f9496b;
font : bold 82% “Lucida Grande”, “Lucida Sans Unicode”, sans-serif; }

Typographic flair
One of the aspects from the inspirational magazine design you are aiming to replicate in

this interface is a drop cap. The :first-letter pseudo-element will style this first letter,

enlarging the text size and floating it to enable the neighboring text to wrap:

li > p {
min-height : 14em;
font-size : 82%; }

Note

For more on styling form buttons,
see Aaron Gustafson’s “Push My
 Button” article for Digital Web
Magazine at www.digital-web.com/
articles/push_my_button/.

330 Transcending CSS

04_TCSS-3_x.indd 33004_TCSS-3_x.indd 330 10/27/06 5:58:14 PM10/27/06 5:58:14 PM

4.41 Using text shadow, a CSS3 property, for more flair4.40 Using attribute selectors

li > p:first-letter {
float : left;
margin : 0 .15em 0 0;
font-size : 300%;
text-transform : uppercase; }

Text shadow is a CSS3 property that you can use to add a little more typographical flair

to your designs. Sadly, at the time this book was rolling off the presses, Apple Safari and

Konqueror are the only browsers that support this useful property (Figure 4.41):

li > p:first-letter {
text-shadow: #333 0 1px 2px; }

Part 4: Transcendence 331

04_TCSS-3_x.indd 33104_TCSS-3_x.indd 331 10/27/06 5:58:15 PM10/27/06 5:58:15 PM

4.43 Keeping your images to
a minimum using PNG
alpha-transparency

4.42 Viewing the design before adding
multiple background images

Multiple background images
This section is the part for which you’ve probably been waiting. But before you move on,

it’s a good idea to preview your design in a browser, and, yes, I mean any standards-aware

browser. Until support for multiple background images extends beyond Safari, this is how

your design will appear to the multi-background challenged (Figure 4.42).

Speed is of the essence when developing any site and can be particularly important when

developing sites that sell. You can improve speed and performance in many ways, such as

by minimizing document size, image sizes, and the quantity of HTTP requests.

Using multiple background images solves many of the problems that designers making flex-

ible boxes have encountered, but you must take care to keep the number of images you use

to a minimum. For this design, you have only two sets of background images required, one

set for the form and another that is common to all the list items (Figure 4.43).

To reduce the number of images, you will create a single set of semitransparent back-

ground images. These alpha-transparent PNG images allow 50 percent of the list item’s

background-color property to show through, creating the effect of using several sets of

images.

You will start by adding the eight images making up the form’s pink, rounded, and friendly

border (Figure 4.44):

form { background-image :
url(“top_left.png”),
url(“top_right.png”),
url(“bottom_right.png”),
url(“bottom_left.png”),
url(“top_center.png”),
url(“middle_right.png”),
url(“bottom_center.png”),
url(“middle_left.png”);

background-repeat :
no-repeat,
no-repeat,
no-repeat,

332 Transcending CSS

04_TCSS-3_x.indd 33204_TCSS-3_x.indd 332 10/27/06 5:58:16 PM10/27/06 5:58:16 PM

4.44 Adding multiple images to the form

no-repeat,
repeat-x,
repeat-y,
repeat-x,
repeat-y;

background-position:
top left,
top right,
bottom right,
bottom left,
top left,
top right,
bottom right,
bottom left; }

Part 4: Transcendence 333

04_TCSS-3_x.indd 33304_TCSS-3_x.indd 333 10/27/06 5:58:17 PM10/27/06 5:58:17 PM

Follow this with the same syntax for all the list items:

li { background-image :
url(“li_top_left.png”),
url(“li_top_right.png”),
url(“li_bottom_right.png”),
url(“li_bottom_left.png”),
url(“li_top_center.png”),
url(“li_middle_right.png”),
url(“li_bottom_center.png”),
url(“li_middle_left.png”);

background-repeat :
no-repeat,
no-repeat,
no-repeat,
no-repeat,
repeat-x,
repeat-y,
repeat-x,
repeat-y;

background-position:
top left,
top right,
bottom right,
bottom left,
top left,
top right,
bottom right,
bottom left; }

If you have a Mac handy, it is time to preview your design in Safari (Figure 4.45). If you

are not a lucky Mac owner, a swift upload to a server and a trip to BrowserCam will show

you the results: a fun, rounded form design.

The notion of multiple background images seems so obvious that I sometimes wonder why

it has taken so long to find its way first into CSS and then into browsers.

I can only hope that the developers of Internet Explorer, Firefox, Opera, and other browsers

follow Apple’s example and make support for CSS multiple background images a priority.

Note

If you haven’t had the time yet to
create this design for yourself, don’t
worry; I have saved you the trouble.
You can find all the files you need for
this example at www.transcendingcss.
com/support/.

334 Transcending CSS

04_TCSS-3_x.indd 33404_TCSS-3_x.indd 334 10/27/06 5:58:17 PM10/27/06 5:58:17 PM

4.45 Previewing the results of adding multiple backround images

Designing multicolumn layouts
As you saw in Part 3, “Inspiration,” dividing text into columns has been a common tech-

nique in many forms of design. It is one that helps the readability of written content by

limiting the length of lines of text.

On the Web, splitting large blocks of text into multiple columns has always been problem-

atic and has so far required that Web designers break their text into extra divisions to form

visual, rather than semantic, groupings of content:

<div id=”content_main” class=”column”>
Main content
</div>

<div id=”content_sub” class=”column”>
Additional content
</div>

Note

Need a reminder of the difference
between a block and an inline
element? Tommy Olsson has
written an excellent tutorial at
www.autisticcuckoo.net/archive.
php?id=2005/01/11/block-vs-inline-1.

Part 4: Transcendence 335

04_TCSS-3_x.indd 33504_TCSS-3_x.indd 335 10/27/06 5:58:17 PM10/27/06 5:58:17 PM

<div id=”content_supp” class=”column”>
Supplementary content
</div>

The CSS3 Multi-column Layout Module is attempting to rectify this problem by making

creating columns easier. It introduces a new column box that you can apply to paragraphs,

lists, divisions, and other block-level elements.

Column widths and count
You can implement multiple columns within a column box in two ways. The first is by dic-

tating the number of columns you require using the column-count property:

div#content_main { column-count : 3; }

The width of all three columns will expand equally to fill the available horizontal space of

the containing element. Alternatively, you can set your desired width for the columns, and

the browser will calculate how many columns will fit into the available space:

div#content_main { column-width : 15em; }

The ability for content to flow from column to column and the ability for new columns to

be created as the browser window expands are effects that have not yet been achievable

using CSS alone.

Gutters, gaps, and rules
To improve readability and visual balance, the Multi-column Layout Module introduces two

new properties, column-gap and column-rule. To use these features, you insert both gaps

(gutters) and rules (dividers) between columns, and their heights will always be equal to

the height of the columns.

You place a column rule in the middle of a column gap. These rules do not take up space.

That is, the presence or thickness of a column rule will not alter the placement of either

columns or gaps (Figure 4.46):

div#content_main {
column-gap : 1em;
column-rule : thin solid black; }

Multicolumn layout
considered harmful?

Since the CSS Working Group first
announced the Multi-column Layout
Module, some designers and acces-
sibility experts have been critical of
its potential effects on readability. It
is true that when it is used inappro-
priately, spreading text across multiple
columns can force a visitor to repeat-
edly scroll up and down to follow the
flow of an article. Roger Johansson
wrote this:

Too many designers value “creativity”
above readability, usability, and
accessibility. Using multiple columns in
a print stylesheet may be useful, but
on-screen, for longer articles? No. Face it,
the Web is not a printed magazine.

—Roger Johansson (www.456bereastreet.
com/archive/200509/css3_multicolumn_
layout_considered_harmful/)

336 Transcending CSS

04_TCSS-3_x.indd 33604_TCSS-3_x.indd 336 10/27/06 5:58:18 PM10/27/06 5:58:18 PM

4.46 Placing a column rule in the middle of the column gap

Note: At the time this book went to press, parts of the Multi-column Layout Module are sup-
ported only in the Firefox 1.5+ and its siblings using the standards-compliant prefix –moz-
prefix. (According to the spec, proprietary CSS properties are allowed, but must be prefaced
with a hyphen and an identifier; -moz, in this case. These include -moz-column-count,
-moz-column-width, and -moz-column-gap.) Find out more about Multi-column Layout
support in these browsers at http://developer.mozilla.org/en/docs/CSS3_Columns.

Multi-column thrills or spills?
I am definitely thrilled by certain aspects of the Multi-column Layout Module but am

distinctly underwhelmed by others. The ability for content to flow from column to column

and the ability for new columns to be created as the browser window expands make Multi-

 column Layout an exciting prospect when used under the right circumstances.

However, many parts of the current working draft are less than ideal, and a great deal of

work needs to be done on the specification before it should become a recommendation.

From both the design and usability perspectives, the results of content reflowing can

be unsatisfactory; for example, content can easily become separated from its associated

headers, and images can be separated from their descriptions or other associated text

(Figure 4.47).

Fortunately, a group of new properties determine where column breaks occur:

h1 { column-break-before : always; }
h2 { column-break-after : avoid; }
h1, h2 { column-break-inside : avoid; }

A gap in the proposals?

The current Multi-column Layout
working draft allows only for the basic
styling of column-rule including
dotted and dashed styles and other
values from the CSS2.1 border style
list, including the unusable, ugly
ridge and groove styles.

The CSS Working Group doesn’t seem
to be planning to implement a feature
I imagine many designers would like
to use: image rules. I can think of
many instances where images would
be the perfect choice for column
rules. Perhaps the following fictitious
syntax might be appropriate:

div#content_main {

column-rule-image : url(rule.

png); }

Even better would be the possibility
of positioning these images either at
the top, bottom, or vertical center of
the column gap:

div#content_main {

column-rule-image : url(rule.

png);

column-rule-align : middle; }

Part 4: Transcendence 337

04_TCSS-3_x.indd 33704_TCSS-3_x.indd 337 10/27/06 5:58:19 PM10/27/06 5:58:19 PM

4.47 Column reflowing can result in undesirable results

Unfortunately, these too can introduce problems, including large amounts of unnecessary

white space or ugly and uneven column lengths (Figure 4.48).

Earlier working drafts of the Multi-column Layout Module included the now missing in action

column-span property that would have enabled elements, such as headings, to span across a

designated number of columns to create the effect regularly seen in newspaper design. Later

drafts are now lacking this way to stop and restart columns.

The Multi-column Layout Module is an exciting prospect for designers, but to be completely

useful, the CSS Working Group must talk to working designers about the features they think

are missing and how they would put these features into everyday use.

Plugging the holes in the
Multi-column Layout Module
using JavaScript and the DOM

Designers and developers have turned
to JavaScript to help them simulate
some parts of CSS3, including the
Multi-column Layout Module.

Developer and author of “Introducing
the CSS3 Multi-Column Module” at
A List Apart (www.alistapart.com/
articles/css3multicolumn/), Cédric
Savarese has developed an experimen-
tal JavaScript implementation of the
CSS3 Multi-column Layout Module.

Find out more about Savarese’s
ingenious solution at www.
csscripting.com.

4.48 Using column break properties can result in additional problems

338 Transcending CSS

04_TCSS-3_x.indd 33804_TCSS-3_x.indd 338 10/27/06 5:58:19 PM10/27/06 5:58:19 PM

Too many designers value “creativity” above

readability, usability, and accessibility. Using

multiple columns in a print stylesheet may

be useful, but onscreen, for longer articles? No.

Face it, the Web is not a printed magazine.
ROGER JOHANSSON

www.456bereastreet.com/archive/200509/
css3_multicolumn_layout_considered_harmful/

04_TCSS.indd 33904_TCSS.indd 339 11/3/06 8:41:47 AM11/3/06 8:41:47 AM

4.49 The design inspiration (top), the final layout (bottom), and the markup (right)

340 Transcending CSS

04_TCSS-3_x.indd 34004_TCSS-3_x.indd 340 10/27/06 5:58:20 PM10/27/06 5:58:20 PM

Designing with the Multi-column Layout Module
For the next example (Figure 4.49), you’ll design an interface design for a cookery site.

You will use percentage and em measurements to create a flexible layout, use a little

 background-image trickery, and use the Multi-column Layout Module to split the text

content and create an attractive result.

On the opposite page is the static design you are aiming to achieve plus the meaningful

elements you will use to mark up your content. Look closely, and you will see that you

require headings, paragraphs, a single unordered list, and only two divisions. What you

can’t see is that the total combined weight of the markup and CSS is only 4Kb, hardly a

heavyweight.

You should begin by setting the stage for the design by applying some simple rules to

both the root <html> and <body> elements, allowing the design to fill 92 percent of the

browser’s width, down to a minimum of 640 pixels:

html {
background-color : #fff; }

body {
font : 78%/1.5 “Trebuchet MS”, “Lucida Grande”,”Lucida Sans Unicode”, Verdana,
sans-serif;
width : 92%;
min-width : 640px;
margin : 0 auto;
color : #333; }

To allow room for the large product images at the top of the design, set padding-top to

360 pixels on the <body> element, and apply the image to the background. Setting its

horizontal position at 50 percent ensures that it will always stay horizontally centered, no

matter what the browser window size:

body {
padding-top : 360px;
background : url(body.png) no-repeat 50% 0; }

The design needs only two divisions: an outer container for the top-level heading and

introduction text and a second for the main content that includes the all-important

unordered list.

Part 4: Transcendence 341

04_TCSS-3_x.indd 34104_TCSS-3_x.indd 341 10/27/06 5:58:22 PM10/27/06 5:58:22 PM

4.50 Finishing up the design

To make room for the image that runs down the right side of the page, set a right

margin on the #main-content division to prevent its contents from overlapping this

background-image:

div#content {
width : 100%;
background : url(content.png) no-repeat 100% 0; }

div#content_main {
margin-right : 320px; }

Now, with your layout complete, a little sprinkling of typographic style will complete

the design (Figure 4.50).

Note

If you haven’t had the time yet to
create this design for yourself, don’t
worry; I have saved you the trouble.
You can find all the files you need for
this example at www.transcendingcss.
com/support/.

342 Transcending CSS

04_TCSS-3_x.indd 34204_TCSS-3_x.indd 342 10/27/06 5:58:22 PM10/27/06 5:58:22 PM

4.51 Going from a one-, to two-,
to three-column layout

What about the multi-columns? Oops! I almost forgot. Creating these columns can’t be

much simpler. You will now apply the multi-column layout styles to the unordered list

only so as not to affect any of the content that comes either before or after it in the

document flow.

Because Gecko-based browsers have already implemented the new multi-column layout

properties using the proprietary –moz- prefix, you will add two sets of style rules, one for

today’s Gecko browsers and one for other browsers when they begin supporting the Multi-

column Layout Module:

ul {
padding : 1em 0;
column-width : 18em;
column-gap : 25px;

-moz-column-width : 18em;
-moz-column-gap : 25px; }

Now you have a flexible design with em-based column widths. Open the final result in a

Gecko-based browser, and play with both the browser width and the text size. Watch as the

list switches from a one-, two-, and three-column layout (Figure 4.51).

Part 4: Transcendence 343

04_TCSS-3_x.indd 34304_TCSS-3_x.indd 343 10/27/06 5:58:23 PM10/27/06 5:58:23 PM

04_TCSS-3_x.indd 34404_TCSS-3_x.indd 344 10/27/06 5:58:24 PM10/27/06 5:58:24 PM

Advanced Layout
It has been ten years since the launch of CSS1, and visual designers have done more with

CSS layouts than the early adopters ever would have thought possible. Compared to the

earliest layout examples from The Noodle Incident and Blue Robot’s Layout Reservoir, the

designs featured every week on CSS gallery sites or planted in the CSS Zen Garden show

just how far designers have taken CSS. In the hands of creative designers and Web develop-

ers, CSS is capable of producing stunning results.

Full CSS layouts have always been a compromise. The current CSS specifications were never

designed to create the visually rich and complex interface layouts that the modern Web

demands. The current methods—floats and positioning—were never intended as layout

tools. The problems with using floats and positioning for layout go far beyond the fragil-

ity of floating an element to create a column and the fact that absolutely positioned are

removed from the normal flow of a document. For a large part, both floated and positioned

layouts depend on a document’s source order. Although many designers have worked hard

to create any-order columns, these types of layouts have almost always required a mass

of additional divisions or hacks and filters to make them work reliably across different

browsers.

Note: You can find many solutions to any-ordered columns at www.positioniseverything.net.

When a visual layout depends on source order, making larger changes to a design has

always required changes to the underlying markup—hardly a true separation of content and

style as promised by CSS. A full separation of content order from visual layout is not only

desirable, but it is essential if designers are ever going to be able to move away from the

familiar CSS layout with either two or three columns and create rich and inspiring designs

without resorting to presentational markup.

Advanced Layout is one of the modules forming the CSS3 specification. It is being designed

specifically to enable designers to break free of these conventions and many of the limita-

tions of the past. It is perhaps one of the most interesting developments in CSS 3.

Acknowledging César Acebal

On a personal note, I would like
to thank my co-contributor, César
Acebal, and the University of Oviedo,
Spain. Acebal is a member of the
W3C’s CSS Working Group and the
author of the ALMCSS Advanced Lay-
out proof of concept that made this
section possible.

Part 4: Transcendence 345

04_TCSS-3_x.indd 34504_TCSS-3_x.indd 345 10/27/06 5:58:27 PM10/27/06 5:58:27 PM

Back to the grid
The Advanced Layout Module builds on the concepts of grid design discussed in Part 3,

“Inspiration.” It establishes a new visual grid model that will enable designers to determine

the layout of forms, navigation, content divisions, or even an entire page. Advanced Layout

divides these elements into slots and uses a simple set of letters to position any child ele-

ment inside a slot in the grid.

Advanced Layout introduces a new display-model property that defines the number of hori-

zontal fields within the areas of the grid with strings of letters.

For example, the following code:

display:
“abc”
“def”;

will create two horizontal grid fields, each with three vertical slots. Two other values (@

and .) define whether a slot is the default or contains only white space:

 • Slot letter. This identifies the slot within the grid for any content that will be posi-

tioned within it.

 • @ (at symbol). This identifies a default slot into which content that has not been situ-

ated can flow.

 • . (period). This identifies a slot that can have no content inserted into it.

For more creative control over the grid, using the same letter more than once will force two

or more slots to combine to form supercolumns. Any content placed inside them will span

multiple columns, a design device that is common in newspaper layouts (Figure 4.52):

{ display:
“a a a”
“d e f”; }

In the next example, using floats to construct even this simple grid layout would require

the elements to be ordered largely according to their visual layout. Using positioning

would be a more reliable but more complex solution. Sadly, this solution could easily break

if a visitor resized the browser window or changed the default size of the text.

346 Transcending CSS

04_TCSS-3_x.indd 34604_TCSS-3_x.indd 346 10/27/06 5:58:27 PM10/27/06 5:58:27 PM

4.52 Spanning multiple columns

Using the Advanced Layout Module, you can keep the markup needed for this example lean

and structural (Figure 4.53, next page):

<div id=”biscotti”>
<p>
Moroccan Biscotti</p>
</div>

<div id=”waffles”>
<p>
Yeasted Waffles</p>
</div>

Part 4: Transcendence 347

04_TCSS-3_x.indd 34704_TCSS-3_x.indd 347 10/27/06 5:58:28 PM10/27/06 5:58:28 PM

4.53 Seeing only the browser default
styles

<div id=”muffins”>
<p>
Oat Bran Carrot and Orange Muffins</p>
</div>

<div id=”jelly”>
<p>
White peach jelly</p>
</div>

<div id=”bread”>
<p>
Zucchini-walnut protein bread</p>
</div>

<div id=”icecream”>
<p>
Sweet and sour cherry choconut ice cream</p>
</div>

Also using Advanced Layout, you can define a grid either on a division or, as in this

example, on the <body> element. Two strings will divide the <body> element into two

fields, each containing three slots. You will also be able to dictate how the height of each

slot will be defined: either by the height of the content inside it, termed intrinsic height, or

by setting an explicit height in pixels or ems:

body { display:
“a b c (intrinsic)”
“d e f (intrinsic)”; }

With this simple CSS in place, each of the page elements will be situated in their slots by

referencing each slot’s identifying letter. The CSS is far less complex than any floating or

positioning methods (Figure 4.54):

div#biscotti { position : a; }
div#wafles { position : b; }
div#muffins { position : c; }
div#jelly { position : d; }
div#bread { position : e; }
div#icecream { position : f; }

348 Transcending CSS

04_TCSS-3_x.indd 34804_TCSS-3_x.indd 348 10/27/06 5:58:28 PM10/27/06 5:58:28 PM

4.54 Situating content into slots

That’s it! You don’t have any floating worries or absolute positioning–clearing woes, just

letters. It doesn’t get much simpler than that.

The Advanced Layout working draft calls its grid-based approach template-based position-

ing, an unfortunate choice of words. Templating is rarely a concept that appeals to creative

designers, but you should forgive the choice of name. Advanced Layout will allow a whole

new realm of creative potential, not limit designers’ creative options.

If you’re hungry to see how easy it will be in the future to create layouts, check out the

next section, where you’ll see just how flexible the Advanced Layout Module will be.

Part 4: Transcendence 349

04_TCSS-3_x.indd 34904_TCSS-3_x.indd 349 10/27/06 5:58:29 PM10/27/06 5:58:29 PM

4.55 The inspiration for the layout (top), the finished design (bottom), and the markup (right)

350 Transcending CSS

04_TCSS-3_x.indd 35004_TCSS-3_x.indd 350 10/27/06 5:58:29 PM10/27/06 5:58:29 PM

Designing with the Advanced Layout Module
On the opposite page (Figure 4.51) you can see the static design you are aiming to

achieve using the Advanced Layout Module, plus the meaningful elements you will use to

mark up your content.

Developing this layout using floats should, on the face of it, present few challenges; you

would give each column an explicit width and float it inside its container division.

But what would happen if you needed to switch the position of any of the columns or

perhaps even the vertical position of the fields? Most likely this would involve diving back

into your markup and moving the elements so you could achieve the visual design. The

Advanced Layout Module removes this necessity because it finally breaks any relationship

between the visual design and the order of the content.

First, set up the four horizontal fields by creating four divisions. The order of these divi-

sions should make sense to any visitor who is reading the content of the page without

styles, and you should preview your document in a browser without styles to ensure that

the order is logical:

<div id=”branding”>
Branding and introduction
</div>

<div id=”content_main”>
Main content
</div>

<div id=”content_sub”>
Additional content
</div>

<div id=”content_supp”>
Supplementary content
</div>

Note: César Acebal has made ALMCSS publicly available, and you can find links to all the
files and Acebal’s own examples at www.transcendingcss.com/support/.

Advanced layout in
action using ALMCSS

The Advanced Layout Module is an
exciting prospect, and many Web
designers and developers (includ-
ing me) have been aching to try it.
Experimenting with new CSS features
before the CSS Working Group has
finalized a specification has been
impossible until now.

As you might imagine, currently no
browsers support any of the CSS for
the Advanced Layout Module. This
should come as no surprise because
the module is, at the time of this
writing, only a working draft. Fortu-
nately, you can explore many parts of
Advanced Layout by using ALMCSS,
which is a proof of concept that uses
JavaScript and CSS positioning to
mimic how Advanced Layout will work.

As you will see in the following
examples, to work around certain
issues with CSS parsers in some
browsers, ALMCSS uses a slightly
different syntax than the proposals
in the Advanced Layout Module:
display becomes display-model
and position becomes situated.

Note that the proposed syntax for
the Advanced Layout CSS has been
modified to work in this section’s
examples.

Part 4: Transcendence 351

04_TCSS-3_x.indd 35104_TCSS-3_x.indd 351 10/27/06 5:58:31 PM10/27/06 5:58:31 PM

4.56 Seeing only the default browser
styles

Second, in each of these divisions, create the columns using nested divisions that, in this

example, contain a paragraph and an image but could just as easily contain any structural

elements. For simplicity (some might say laziness), I have named these divisions one, two,

three, and so on (Figure 4.56):

<div id=”content_main”>
<div class=”one”>

<p>Moroccan Biscotti</p>
</div>

<div class=”two”>

<p>Yeasted Waffles</p>
</div>

<div class=”three”>

<p>Oat Bran Carrot and Orange Muffins</p>
</div>
</div>

Whereas using floats or positioning to accomplish the design layout might be convoluted,

with the Advanced Layout Module the CSS is simple. Next, define the display-model prop-

erty on the <body> element:

body { display-model :
“a (intrinsic)”
“b (intrinsic)”
“c (intrinsic)”
“d (intrinsic)”; }

You can also create a microgrid by giving each field its own display-model property to

divide it into varying numbers of vertical columns:

div#branding { situated : a; display-model : “112 (intrinsic)”;
div#content_main { situated : b; display-model : “123 (intrinsic)”;
div#content_sub { situated : c; display-model : “1234 (intrinsic)”;
div#content_supp { situated : d; display-model : “123 (intrinsic)”;

352 Transcending CSS

04_TCSS-3_x.indd 35204_TCSS-3_x.indd 352 10/27/06 5:58:32 PM10/27/06 5:58:32 PM

4.57 Developing a layout that is
flexible and robust

If you are watching closely, you may notice that the #branding division uses the same

numbered identifier twice (122). This will allow its content to span across two of the three

columns.

Lastly, you can position each of the nested divisions into any of the slots you have defined,

but only inside their containing division:

div#branding div.one { situated : 1; }
div#branding div.two { situated : 2; }

div#content_main div.one { situated : 1; }
div#content_main div.two { situated : 2; }
div#content_main div.three { situated : 3; }

div#content_sub div.one { situated : 1; }
div#content_sub div.two { situated : 2; }
div#content_sub div.three { situated : 3; }
div#content_sub div.four { situated : 4; }

div#content_supp div.one { situated : 1; }
div#content_supp div.two { situated : 2; }
div#content_supp div.three { situated : 3; }

The result is a robust, flexible grid layout that can get smaller and bigger with the browser

window and will accommodate changes in text size without breaking (Figure 4.57).

Have your cake, and eat it too
You have seen how simple it will be to create a complex grid design with the Advanced

Layout Module. The flexibility of placing content into any slot without changing the source

order of the content makes the Advanced Layout Module impressive, and it will liberate

designers from presentational thinking about markup and CSS.

To demonstrate the layout flexibility of Advanced Layout, the next examples are all varia-

tions of the same markup. The Advanced Layout CSS appears with each variation (next
pages).

Part 4: Transcendence 353

04_TCSS-3_x.indd 35304_TCSS-3_x.indd 353 10/27/06 5:58:33 PM10/27/06 5:58:33 PM

div#branding { situated : b; display-model : “112 (intrinsic)”; }
div#branding div.one { situated : 1; }
div#branding div.two { situated : 2; }

div#content_main { situated : a; display-model : “123 (intrinsic)”; }
div#content_main div.one { situated : 1; }
div#content_main div.two { situated : 2; }
div#content_main div.three { situated : 3; }

div#content_sub { situated : c; display-model : “1234 (intrinsic)”; }
div#content_sub div.one { situated : 1; }
div#content_sub div.two { situated : 2; }
div#content_sub div.three { situated : 3; }
div#content_sub div.four { situated : 4; }

div#content_supp { situated : d; display-model : “123 (intrinsic)”; }
div#content_supp div.one { situated : 1; }
div#content_supp div.two { situated : 2; }
div#content_supp div.three { situated : 3; }

div#branding { situated : a; display-model : “112 (intrinsic)”; }
div#branding div.one { situated : 1; }
div#branding div.two { situated : 2; }

div#content_main { situated : b; display-model : “123 (intrinsic)”; }
div#content_main div.one { situated : 1; }
div#content_main div.two { situated : 2; }
div#content_main div.three { situated : 3; }

div#content_sub { situated : c; display-model : “1234 (intrinsic)”; }
div#content_sub div.one { situated : 1; }
div#content_sub div.two { situated : 2; }
div#content_sub div.three { situated : 3; }
div#content_sub div.four { situated : 4; }

div#content_supp { situated : d; display-model : “123 (intrinsic)”; }
div#content_supp div.one { situated : 1; }
div#content_supp div.two { situated : 2; }
div#content_supp div.three { situated : 3; }

354 Transcending CSS

04_TCSS-3_x.indd 35404_TCSS-3_x.indd 354 10/27/06 5:58:33 PM10/27/06 5:58:33 PM

div#branding { situated : b; display-model : “112 (intrinsic)”; }
div#branding div.one { situated : 1; }
div#branding div.two { situated : 2; }

div#content_main { situated : c; display-model : “123 (intrinsic)”; }
div#content_main div.one { situated : 1; }
div#content_main div.two { situated : 2; }
div#content_main div.three { situated : 3; }

div#content_sub { situated : d; display-model : “1234 (intrinsic)”; }
div#content_sub div.one { situated : 1; }
div#content_sub div.two { situated : 2; }
div#content_sub div.three { situated : 3; }
div#content_sub div.four { situated : 4; }

div#content_supp { situated : a; display-model : “123 (intrinsic)”; }
div#content_supp div.one { situated : 1; }
div#content_supp div.two { situated : 2; }
div#content_supp div.three { situated : 3; }

div#branding { situated : d; display-model : “112 (intrinsic)”; }
div#branding div.one { situated : 1; }
div#branding div.two { situated : 2; }

div#content_main { situated : a; display-model : “123 (intrinsic)”; }
div#content_main div.one { situated : 1; }
div#content_main div.two { situated : 2; }
div#content_main div.three { situated : 3; }

div#content_sub { situated : b; display-model : “1234 (intrinsic)”; }
div#content_sub div.one { situated : 1; }
div#content_sub div.two { situated : 2; }
div#content_sub div.three { situated : 3; }
div#content_sub div.four { situated : 4; }

div#content_supp { situated : c; display-model : “123 (intrinsic)”; }
div#content_supp div.one { situated : 1; }
div#content_supp div.two { situated : 2; }
div#content_supp div.three { situated : 3; }

Part 4: Transcendence 355

04_TCSS-3_x.indd 35504_TCSS-3_x.indd 355 10/27/06 5:58:34 PM10/27/06 5:58:34 PM

div#branding { situated : b; display-model : “112 (intrinsic)”; }
div#branding div.one { situated : 1; }
div#branding div.two { situated : 2; }

div#content_main { situated : d; display-model : “123 (intrinsic)”; }
div#content_main div.one { situated : 1; }
div#content_main div.two { situated : 2; }
div#content_main div.three { situated : 3; }

div#content_sub { situated : a; display-model : “1234 (intrinsic)”; }
div#content_sub div.one { situated : 1; }
div#content_sub div.two { situated : 2; }
div#content_sub div.three { situated : 3; }
div#content_sub div.four { situated : 4; }

div#content_supp { situated : c; display-model : “123 (intrinsic)”; }
div#content_supp div.one { situated : 1; }
div#content_supp div.two { situated : 2; }
div#content_supp div.three { situated : 3; }

div#branding { situated : b; display-model : “122 (intrinsic)”; }
div#branding div.one { situated : 2; }
div#branding div.two { situated : 1; }

div#content_main { situated : d; display-model : “123 (intrinsic)”; }
div#content_main div.one { situated : 3; }
div#content_main div.two { situated : 2; }
div#content_main div.three { situated : 1; }

div#content_sub { situated : a; display-model : “1234 (intrinsic)”; }
div#content_sub div.one { situated : 4; }
div#content_sub div.two { situated : 3; }
div#content_sub div.three { situated : 2; }
div#content_sub div.four { situated : 1; }

div#content_supp { situated : c; display-model : “123 (intrinsic)”; }
div#content_supp div.one { situated : 3; }
div#content_supp div.two { situated : 2; }
div#content_supp div.three { situated : 1; }

356 Transcending CSS

04_TCSS-3_x.indd 35604_TCSS-3_x.indd 356 10/27/06 5:58:35 PM10/27/06 5:58:35 PM

div#branding { situated : c; display-model : “122 (intrinsic)”; }
div#branding div.one { situated : 2; }
div#branding div.two { situated : 1; }

div#content_main { situated : a; display-model : “123 (intrinsic)”; }
div#content_main div.one { situated : 3; }
div#content_main div.two { situated : 1; }
div#content_main div.three { situated : 2; }

div#content_sub { situated : d; display-model : “1234 (intrinsic)”; }
div#content_sub div.one { situated : 3; }
div#content_sub div.two { situated : 2; }
div#content_sub div.three { situated : 4; }
div#content_sub div.four { situated : 1; }

div#content_supp { situated : b; display-model : “123 (intrinsic)”; }
div#content_supp div.one { situated : 2; }
div#content_supp div.two { situated : 3; }
div#content_supp div.three { situated : 1; }

div#branding { situated : a; display-model : “122 (intrinsic)”; }
div#branding div.one { situated : 2; }
div#branding div.two { situated : 1; }

div#content_main { situated : c; display-model : “123 (intrinsic)”; }
div#content_main div.one { situated : 1; }
div#content_main div.two { situated : 3; }
div#content_main div.three { situated : 2; }

div#content_sub { situated : d; display-model : “1234 (intrinsic)”; }
div#content_sub div.one { situated : 1; }
div#content_sub div.two { situated : 2; }
div#content_sub div.three { situated : 4; }
div#content_sub div.four { situated : 3; }

div#content_supp { situated : b; display-model : “123 (intrinsic)”; }
div#content_supp div.one { situated : 1; }
div#content_supp div.two { situated : 3; }
div#content_supp div.three { situated : 2; }

Part 4: Transcendence 357

04_TCSS-3_x.indd 35704_TCSS-3_x.indd 357 10/27/06 5:58:37 PM10/27/06 5:58:37 PM

04_TCSS-3_x.indd 35804_TCSS-3_x.indd 358 10/27/06 5:58:38 PM10/27/06 5:58:38 PM

Concluding Remarks
So, here you are at the end of the book. What’s next?

The future.

If you enjoy designing for the Web as much as I do, you’ll find that there will be very

exciting times ahead of you. You will have many opportunities—ones that only a few short

years ago were unimaginable—to create great-looking sites that people will love to use.

In just a few years since CSS was born, the Web design industry has changed significantly:

Accessibility, meaningful markup, and presentation with CSS are now a reality in the Web

professional’s daily life. A true professional never stops learning and CSS would not be used

so widely today had it not been for the hard work and generosity of the many men and

women who struggled to find solutions and who then shared their work with the rest of us.

I hope that as CSS develops in the future and even more exiting solutions are reached, you

will follow in their footsteps and share what you have learned.

Designing and developing for the Web should be a process filled with creativity and

whether you write code, create databases, or are a visual designer, there is creativity in

everything that you do. As part of my role as an invited expert to the W3C’s CSS Working

Group, I help to bring a creative designer’s voice to the table and I welcome your thoughts.

If future versions of CSS are to meet the needs of visual designers and developers then

it is up to all of us to help shape its future by becoming involved in the discussions and

debates over how and where it is to go next. So I urge you to become involved in whatever

capacity you can, no matter how big or how small your contribution.

Now it’s time to stop listening to me and time to start designing the future.

Part 4: Transcendence 359

04_TCSS-3_x.indd 35904_TCSS-3_x.indd 359 10/27/06 5:58:42 PM10/27/06 5:58:42 PM

